diff --git a/mingw-w64-rust/0007-clang-subsystem.patch b/mingw-w64-rust/0007-clang-subsystem.patch index fead5070b02ca..1cd53aa861a21 100644 --- a/mingw-w64-rust/0007-clang-subsystem.patch +++ b/mingw-w64-rust/0007-clang-subsystem.patch @@ -120,16 +120,16 @@ $ diff -urN rustc-1.75.0-src/compiler/rustc_target/src/spec/base/windows_gnu.rs. linker: Some("gcc".into()), dynamic_linking: true, dll_tls_export: false, -diff -urN rustc-1.65.0-src.orig/compiler/rustc_target/src/spec/x86_64_pc_windows_gnu.rs rustc-1.65.0-src/compiler/rustc_target/src/spec/x86_64_pc_windows_gnu.rs ---- rustc-1.65.0-src.orig/compiler/rustc_target/src/spec/targets/x86_64_pc_windows_gnu.rs 2022-11-09 21:53:40.408733200 +0100 -+++ rustc-1.65.0-src/compiler/rustc_target/src/spec/targets/x86_64_pc_windows_gnu.rs 2022-11-09 22:07:46.192364800 +0100 -@@ -7,7 +7,7 @@ - base.add_pre_link_args(LinkerFlavor::Ld, &["-m", "i386pep", "--high-entropy-va"]); - base.add_pre_link_args(LinkerFlavor::Gcc, &["-m64", "-Wl,--high-entropy-va"]); - base.max_atomic_width = Some(64); +diff -urN rustc-1.78.0-src/compiler/rustc_target/src/spec/targets/x86_64_pc_windows_gnu.rs.orig rustc-1.78.0-src/compiler/rustc_target/src/spec/targets/x86_64_pc_windows_gnu.rs +--- rustc-1.78.0-src/compiler/rustc_target/src/spec/targets/x86_64_pc_windows_gnu.rs.orig 2024-05-03 21:03:07.983614400 +0200 ++++ rustc-1.78.0-src/compiler/rustc_target/src/spec/targets/x86_64_pc_windows_gnu.rs 2024-05-03 21:37:12.067938000 +0200 +@@ -12,7 +12,7 @@ + ); + base.add_pre_link_args(LinkerFlavor::Gnu(Cc::Yes, Lld::No), &["-m64", "-Wl,--high-entropy-va"]); + base.max_atomic_width = Some(128); - base.linker = Some("x86_64-w64-mingw32-gcc".into()); + base.linker = Some("x86_64-w64-mingw32-clang".into()); - + Target { llvm_target: "x86_64-pc-windows-gnu".into(), diff -urN rustc-1.76.0-src/src/bootstrap/bootstrap.py.orig rustc-1.76.0-src/src/bootstrap/bootstrap.py diff --git a/mingw-w64-rust/0012-vendor-embed-manifest.patch b/mingw-w64-rust/0012-vendor-embed-manifest.patch index 85d148e91266e..cf5be02cdf719 100644 --- a/mingw-w64-rust/0012-vendor-embed-manifest.patch +++ b/mingw-w64-rust/0012-vendor-embed-manifest.patch @@ -2,4 +2,4 @@ diff -Nur rustc-1.77.0-src/vendor.orig/embed-manifest/.cargo-checksum.json rustc --- rustc-1.77.0-src/vendor.orig/embed-manifest/.cargo-checksum.json 1969-12-31 16:00:00.000000000 -0800 +++ rustc-1.77.0-src/vendor/embed-manifest/.cargo-checksum.json 2024-03-25 11:10:27.791701600 -0700 @@ -0,0 +1 @@ -+{"files":{"CHANGELOG.md":"3b9d90277c0bb06de10a31110f3c7eea58802f2d090266631e32161f2d9c8562","Cargo.toml":"56b4fc99ece4667fd2eb8fe971070e2dc9774efa4221a9d63ffe98a7ee74642e","LICENSE":"d041a5a86caaf9cc7720f3637d689252083a664d9ccd946a36d1c7c708d204cb","README.md":"8cf8a7b20cfb7fa43c4ee9585bf92ea6c5a5c4ca3ef700974edb02025d5146c8","rustfmt.toml":"d364003c8da50e2707b7c01140c170098bac682b3f94ff98057f4ce74a18e62a","sample.exe.manifest":"01e80ef76de2b628d452c7e80022654b9e0c8aee72ec64ee522c7083d835f4df","src/embed/coff.rs":"0ea7bfb9f5135843221912078bfd83a4f424a13cf5a610b25c4275a400484fcc","src/embed/error.rs":"aecb4928e70b02b784557352608f6d4fb9b88b44ae3297a33969a0f2219c416c","src/embed/mod.rs":"0c2df4c80a4b9818f4de8e54074098d195eea19bcdd0858097416e67c733c4d9","src/embed/test.rs":"d527b7ce78bd9672057f2f9e2e268b48ffa40ad909fd6ffd119650d5244cf4a9","src/lib.rs":"ff1e87d48bb9549764e5322c54184934da08127f5187ede0db7f138544b00711","src/manifest/mod.rs":"432f4bbf330fe7c5d57876ba38cd789b6a1cd55f5c1cf408674ed153db8293a5","src/manifest/xml.rs":"1bce12120e17a49da43eabbd1b04f712b3f6ece7fcbca9186319e301890e20c5"},"package":"40ff574b0b0a794f8995383bb83f21f8f99214422cae791cb48d66da524b00f7"} ++{"files":{"CHANGELOG.md":"3b9d90277c0bb06de10a31110f3c7eea58802f2d090266631e32161f2d9c8562","Cargo.toml":"56b4fc99ece4667fd2eb8fe971070e2dc9774efa4221a9d63ffe98a7ee74642e","LICENSE":"d041a5a86caaf9cc7720f3637d689252083a664d9ccd946a36d1c7c708d204cb","README.md":"8cf8a7b20cfb7fa43c4ee9585bf92ea6c5a5c4ca3ef700974edb02025d5146c8","rustfmt.toml":"d364003c8da50e2707b7c01140c170098bac682b3f94ff98057f4ce74a18e62a","sample.exe.manifest":"a0e53ad5d65af69fe608999bcdab2e7c705a27c4a722c444d2d12cb89de68b6b","src/embed/coff.rs":"0ea7bfb9f5135843221912078bfd83a4f424a13cf5a610b25c4275a400484fcc","src/embed/error.rs":"aecb4928e70b02b784557352608f6d4fb9b88b44ae3297a33969a0f2219c416c","src/embed/mod.rs":"0c2df4c80a4b9818f4de8e54074098d195eea19bcdd0858097416e67c733c4d9","src/embed/test.rs":"d527b7ce78bd9672057f2f9e2e268b48ffa40ad909fd6ffd119650d5244cf4a9","src/lib.rs":"ff1e87d48bb9549764e5322c54184934da08127f5187ede0db7f138544b00711","src/manifest/mod.rs":"432f4bbf330fe7c5d57876ba38cd789b6a1cd55f5c1cf408674ed153db8293a5","src/manifest/xml.rs":"1bce12120e17a49da43eabbd1b04f712b3f6ece7fcbca9186319e301890e20c5"},"package":"40ff574b0b0a794f8995383bb83f21f8f99214422cae791cb48d66da524b00f7"} diff --git a/mingw-w64-rust/0013-backport-compiler-builtins.patch b/mingw-w64-rust/0013-backport-compiler-builtins.patch index 01968f0e6f64e..2994cc3c69c99 100644 --- a/mingw-w64-rust/0013-backport-compiler-builtins.patch +++ b/mingw-w64-rust/0013-backport-compiler-builtins.patch @@ -1,7 +1,7 @@ ---- rustc-1.77.1-src/vendor/compiler_builtins/.cargo-checksum.json.orig 2024-03-26 21:47:50.000000000 -0700 -+++ rustc-1.77.1-src/vendor/compiler_builtins/.cargo-checksum.json 2024-03-31 15:26:15.656091600 -0700 +--- rustc-1.78.0-src/vendor/compiler_builtins/.cargo-checksum.json.orig 2024-05-03 23:17:29.287675700 +0200 ++++ rustc-1.78.0-src/vendor/compiler_builtins/.cargo-checksum.json 2024-05-03 23:18:03.614156100 +0200 @@ -1 +1 @@ --{"files":{"Cargo.lock":"4b1c972003a6b5173d5d394900fe4597a80ebf3700463aeca9e6c35ea2f765c7","Cargo.toml":"b75da75896d218b6ca3460febb5606c8dc55c730d54dce2554fa97bfb7068b41","LICENSE.txt":"0e13fed90654e0bc677d624a2d770833a09541fe0c0bdb3d051b3d081207393a","README.md":"693b529db2e5dd13069c05ef2e76e26c1fe1b2a590b07cd8e26dfb2df087ba62","build.rs":"c3d31731175775918d2e7b3e4c19457085be966b85992e33e75435bda32acd9f","examples/intrinsics.rs":"5a1b3dbebfb8bbf96a1e9001f04f31a6e408d0e384c6d2f71e2d79c0945e1be5","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"99de01ded7922bb93a882ad5ad8b472b5cae0059dea0bdca2077f65e94483150","libm/src/math/acoshf.rs":"10750c4d39ef6717b20a15ef1ce43e15eb851682d2f820f7e94501adec98b9a5","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"4dd51affa71cce34a192ad66154e248f8d1c4b40fb497f29052333e425bb740f","libm/src/math/asinhf.rs":"914bfecf449f5e2bce786aa12c056d419073c6011d41c1bab7c39ba765fa4c53","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"57a8fb3f0f116fa4a966ac6bc2abd5f80236ead8e79013f468bd3786921f7110","libm/src/math/atanhf.rs":"6f2e57aaec1b5fc7609cb3938b3d155f51b4237dbda530739c34a0448cd9beb9","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"8b6440a251f0f1509d87f18122f74d0d5c03d0b60517e89e441434a3c5d84591","libm/src/math/copysignf.rs":"87d35436d224852ada93a2e93f6730cf1a727b808dd10e7d49ab4585866e336b","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"de69e6669ce1014e5b5086a7a6d01c4755f2f0590e204d2a77bea455764114f7","libm/src/math/erff.rs":"6acdbb07f74296067bb0380b850918cfb5806a89f9ff04352a7a0b921d728944","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2e136c6ecedd8e57a6c31796f57fae4546fcfd8bc6be66c836f553df9c74b907","libm/src/math/exp10f.rs":"9a3ce506ec587066a355ab74e0eb69a03a214ac405718087ae9772365050b20b","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"916ae11e4763588518d64dee82afb41be9d1ee38ecc0679c821d4e7e22cd3dc5","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d87963472cd5bfcb83eb4010c67f3653857cf28f11378e06d63abae14c723e5d","libm/src/math/fmaf.rs":"1db6ee0d47ddbdb441cfe167edf89b431239f5805708fd0376cf5c01349a4bd6","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"d178ad7ca3439f82d565962b143f20448e45b2e2c51357b127abaec683297e32","libm/src/math/ilogbf.rs":"00f2b1b0496e21c6a42d68aea74d7156fa2ff0a735741b9051f3ca1cf0f57586","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"0edd18e4f96bfcbe8b1b5af3eeca5208cd6d2d479dfa5ad117c9dfeccecf614f","libm/src/math/lgamma_r.rs":"f44a37aeccd56559ef784ae8edf217d14ad5cc2d910f0a65e70ffc86d7dc23dd","libm/src/math/lgammaf.rs":"967845357758b868a571857ec001f9f9154001110b8e97c08b6d10586bed9c49","libm/src/math/lgammaf_r.rs":"7143016d60e11fa235d53968125e57231b1104ce52149b5e1eed39629e0d1ff0","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"d694260529d51d0bc17f88ad557d852b9bb0bc3f7466cf7f62b679dc95ebba42","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"482f31ff4e4eacf885f6130ae26a1d59f76b382059d6c742f30e5036811d3ca8","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/rint.rs":"3b3cbdbe9c9390990bd90e45b5c839ab65cf820cdf936feabd64b23422359942","libm/src/math/rintf.rs":"43d979c3be5ac8f9f06853a0a5b707dc8e20a9aba2cbbc3a132db84c95c37a11","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"1cf62a16c215e367f51078a3ba23a3f257682032a8f3c657293029a886b18d82","libm/src/math/sincosf.rs":"b0f589e6ada8215944d7784f420c6721c90387d799e349ce7676674f3c475e75","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"5f3a0a582b174fcfccb9c5274899cb05b664ccb92bf1d42caa58890947b68256","libm/src/math/sqrtf.rs":"da926ac27af6eecdf8b62d8baeefcfe1627110592e44298f6b7f05b7ac12fe7e","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"c889cfa49bbeb4dbb0941fe9fac3b4da7d5879dcf04a3b9bb6e56de529baf374","libm/src/math/tgammaf.rs":"0737b34777095d0e4d07fe533e8f105082dd4e8ece411bba6ae5993b45b9388c","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/aarch64.rs":"c414ad2cd6af35bf0bfe1ddd0d2e6e07a7a0051490e11346ad689436711e385c","src/aarch64_linux.rs":"a4bf136ba1624f253132a8588aac438ce23244a16655149320338ac980ad48cc","src/arm.rs":"d26d44f9e9a8b79b6b3a44373c454da401ce2040348de55688bb637d18d7672b","src/arm_linux.rs":"35a4cb7b75015543feb15b0c692da0faf0e6037d3b97a4a18067ba416eae1a70","src/float/add.rs":"cfb03a04c339054463e63db643455e61313079061759a85823d7a4ce44823837","src/float/cmp.rs":"01fae56128e062c9581d53f90b7d110c9c5083093690227b25bd412c5e17362e","src/float/conv.rs":"8bf710288f88cfbf67e510f68abbb5a4f7173d2ea9ef32f98d594935fc051641","src/float/div.rs":"84168e25b0d54f88efc993fd26d2296bd67db6bb531e466805e1fd8b89d76670","src/float/extend.rs":"259d9dee49297a0e28efbc522fa2b411b613e04eccbbc8a7e2dc6657eb93ff39","src/float/mod.rs":"a91cf65abb6e715c5559e3e4bd87a69cd99a9552d54804d0b7137c02c513f158","src/float/mul.rs":"482078b7098a407c395e07077299da6860a02a2b79125803481f66eb1bc18979","src/float/pow.rs":"dc05e1692e29c8e2f3bc7d4e525bd6249b07f6079e14f7cd12772f844ffb9365","src/float/sub.rs":"0bde7c682cf95f18731fcdfdb48b9185da592522946ae64dd0c29a8f9972d744","src/float/trunc.rs":"d5b9204e5d93331996e6e87c8f034ce69f8c273e8cfdd6760275789b9894226f","src/hexagon.rs":"bc42fc9f4749cff1350bb19326bff97ae2f9cceedb72bf1e90d9b59a93727f82","src/hexagon/dfaddsub.s":"4d100ac8e15559d635a7a59db7883a418ab678325448561e1771e60e8be572b6","src/hexagon/dfdiv.s":"80357702ad05cd3e9e5d2e9de622a4deee79c0cfa08876f66d5abc7fe23bb914","src/hexagon/dffma.s":"784b891716112ab1f2f4ecb462fbf39ca7700f4f06c4518d91d8ac157a8e2786","src/hexagon/dfminmax.s":"4aee42cfcafe2df910d2de7ab0b8c7ca36173496220ee79bc1c02d6adcbdedbb","src/hexagon/dfmul.s":"c05a8ac061e3a923704688dd7b15fd35e6dfceef88761f48ab126c290a624cf0","src/hexagon/dfsqrt.s":"7ecc42449aa3c45e6c8b0cbaa8dbf7eb3bdd125f8b20320cf13a9b5668f86c99","src/hexagon/divdi3.s":"21ff6787df365f9dc6fa92be9ca0d5fce4adc55ce7d43da227d60c590f42f879","src/hexagon/divsi3.s":"14da4a289e3b18a3240ba8f313904bca42e7b912fa288dbeda2ad57beabc8400","src/hexagon/fastmath2_dlib_asm.s":"2713a0d45d6f8496d85e81dc6b55e5ca669ab3610f7bd3d4d8aa63c866e8336d","src/hexagon/fastmath2_ldlib_asm.s":"1e5027fd6ab713efb39a29aac37be1b7e3b5d71cc6d65302b16ac60fad3d137a","src/hexagon/func_macro.s":"4d6248a31cea3d60e790a706725d9e587d758c047cfd6d3d6952d5da4b0d035d","src/hexagon/memcpy_forward_vp4cp4n2.s":"2ca2c807831258ccb58dd0f52f76230ea3b79cafd10a5dcca05e851c14e7ff41","src/hexagon/memcpy_likely_aligned.s":"5a2d2e938cb5dc4bdae743f9806978c4b24295c8ff168d5c62d0d3c126a3e6b5","src/hexagon/moddi3.s":"6feac04ab63f0ca9d1198cee321eecda844ca8c19340830c084129f71d8ec724","src/hexagon/modsi3.s":"457d070dbff8d10ed950a6dbc20c52f9e6d4518f73e1855ea596997c0924adf3","src/hexagon/sfdiv_opt.s":"ca13c3b24cfc7e3f6a73045584cfeb6fa670440958a38a5c80ad387586f52157","src/hexagon/sfsqrt_opt.s":"d9bf0ba9948eefc62c095f28b7c6b18f60c70ccfa95fd4db932fdb12c660721b","src/hexagon/udivdi3.s":"6cb96d73b59246431bba37e1f4c4003a8c1d4a059449e897c1282bcd90bcb7c5","src/hexagon/udivmoddi4.s":"f6e6e2eaedc32b6ac84a81c5dec2c4b054d123cbc749b9a1fdc4efdf598cdcb5","src/hexagon/udivmodsi4.s":"7b06ef270c1bd1b03d36863a3dc2f1fa67c44aa21a192e7e647c829658da4a11","src/hexagon/udivsi3.s":"66c0a1e5548b9c5e1ed850a76ad0baf505f1f594cdbd6e3ed27c2e64f90e629e","src/hexagon/umoddi3.s":"51cac49914d511ea9fd827b599d07d5f97eff885b88ef85ca767ffdf98c94798","src/hexagon/umodsi3.s":"24142f8cafd2aa903358176bbd67ef01c0cce0aa3ddb9a5ff1fd797d46e4a54b","src/int/addsub.rs":"89d9687f662a5cb7a57c9b42d056775c33e4f935b7285f5f1558c7ca4b605133","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"ead0733d605575eba996f94cdf804e5e6eaab290e213707a40278863b1889d30","src/int/sdiv.rs":"01d62e65f34ec0d3dbca41ea350e241367d4cf8dcc55882e09c701d4e84ae895","src/int/shift.rs":"ade15d5ede477e2cc21d7538ffe26efe45880bbfb6e3a2924e05c99b4b371b61","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"6bdb94c349705e68ca17ae6ac53a87658d2e0b1860ee72d73c53cc9d171062ae","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"3f6c132fecf9bec02e403e38c1c93ab4dc604819bec690e9a83c573cea40339b","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"e451ead3c1c8cf38c71288d7473d6fb47e567c33d07f68b39e91081b1dff346c","src/lib.rs":"4c3958a6a32520212ec0bc9c6f1d17c433cfdda3accba80955d79384f427df69","src/macros.rs":"33166bf8978961cf0179baa1e52148345414cfe6217bded4fbaa909a99f1a6d1","src/math.rs":"ff1c7c659f7dcf27dd968364a3675d62078e7ea74f72e25b04f6aa8d6f2d01c2","src/mem/impls.rs":"8b389b9aeb43dd55351a86abd4b5fc311f7161e1a4023ca3c5a4c57b49650881","src/mem/mod.rs":"714763d045a20e0a68c04f929d14fb3d7b28662dda4a2622970416642af833dc","src/mem/x86_64.rs":"2f29fb392086b3f7e2e78fcfcbf0f0e205822eb4599f1bdf93e41833e1bd2766","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"50ddd6c732a9f810ab6e15a97b22fdc94cfc1dea09c45d87c833937f9206bee0","src/x86.rs":"117b50d6725ee0af0a7b3d197ea580655561f66a870ebc450d96af22bf7f39f6","src/x86_64.rs":"aa26062784eff574fee4075d23b0ea2fdd1bdbc9a7458b099c8fd307ee61024f"},"package":"3686cc48897ce1950aa70fd595bd2dc9f767a3c4cca4cd17b2cb52a2d37e6eb4"} +-{"files":{"Cargo.lock":"056c692491ce9649e4678a8f665e9ccf5e0c0d8e9ca16cb9ee9fddb1e1334e6c","Cargo.toml":"e327a1cb409854c017490feb53175e9cbb03b5e1f7b14e63b60976e76abc0cec","LICENSE.txt":"0e13fed90654e0bc677d624a2d770833a09541fe0c0bdb3d051b3d081207393a","README.md":"ca3517bb7005f24799a86290047b8f0986d5c5356dcaba4d012df3e4baee4030","build.rs":"85f31d450b44d1f9e329e72a46d181a22e2933593407eeaaebb120453f82757f","examples/intrinsics.rs":"5a1b3dbebfb8bbf96a1e9001f04f31a6e408d0e384c6d2f71e2d79c0945e1be5","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"99de01ded7922bb93a882ad5ad8b472b5cae0059dea0bdca2077f65e94483150","libm/src/math/acoshf.rs":"10750c4d39ef6717b20a15ef1ce43e15eb851682d2f820f7e94501adec98b9a5","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"4dd51affa71cce34a192ad66154e248f8d1c4b40fb497f29052333e425bb740f","libm/src/math/asinhf.rs":"914bfecf449f5e2bce786aa12c056d419073c6011d41c1bab7c39ba765fa4c53","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"57a8fb3f0f116fa4a966ac6bc2abd5f80236ead8e79013f468bd3786921f7110","libm/src/math/atanhf.rs":"6f2e57aaec1b5fc7609cb3938b3d155f51b4237dbda530739c34a0448cd9beb9","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"8b6440a251f0f1509d87f18122f74d0d5c03d0b60517e89e441434a3c5d84591","libm/src/math/copysignf.rs":"87d35436d224852ada93a2e93f6730cf1a727b808dd10e7d49ab4585866e336b","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"de69e6669ce1014e5b5086a7a6d01c4755f2f0590e204d2a77bea455764114f7","libm/src/math/erff.rs":"6acdbb07f74296067bb0380b850918cfb5806a89f9ff04352a7a0b921d728944","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2e136c6ecedd8e57a6c31796f57fae4546fcfd8bc6be66c836f553df9c74b907","libm/src/math/exp10f.rs":"9a3ce506ec587066a355ab74e0eb69a03a214ac405718087ae9772365050b20b","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"916ae11e4763588518d64dee82afb41be9d1ee38ecc0679c821d4e7e22cd3dc5","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d87963472cd5bfcb83eb4010c67f3653857cf28f11378e06d63abae14c723e5d","libm/src/math/fmaf.rs":"1db6ee0d47ddbdb441cfe167edf89b431239f5805708fd0376cf5c01349a4bd6","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"d178ad7ca3439f82d565962b143f20448e45b2e2c51357b127abaec683297e32","libm/src/math/ilogbf.rs":"00f2b1b0496e21c6a42d68aea74d7156fa2ff0a735741b9051f3ca1cf0f57586","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"0edd18e4f96bfcbe8b1b5af3eeca5208cd6d2d479dfa5ad117c9dfeccecf614f","libm/src/math/lgamma_r.rs":"f44a37aeccd56559ef784ae8edf217d14ad5cc2d910f0a65e70ffc86d7dc23dd","libm/src/math/lgammaf.rs":"967845357758b868a571857ec001f9f9154001110b8e97c08b6d10586bed9c49","libm/src/math/lgammaf_r.rs":"7143016d60e11fa235d53968125e57231b1104ce52149b5e1eed39629e0d1ff0","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"d694260529d51d0bc17f88ad557d852b9bb0bc3f7466cf7f62b679dc95ebba42","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"482f31ff4e4eacf885f6130ae26a1d59f76b382059d6c742f30e5036811d3ca8","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/rint.rs":"3b3cbdbe9c9390990bd90e45b5c839ab65cf820cdf936feabd64b23422359942","libm/src/math/rintf.rs":"43d979c3be5ac8f9f06853a0a5b707dc8e20a9aba2cbbc3a132db84c95c37a11","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"1cf62a16c215e367f51078a3ba23a3f257682032a8f3c657293029a886b18d82","libm/src/math/sincosf.rs":"b0f589e6ada8215944d7784f420c6721c90387d799e349ce7676674f3c475e75","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"5f3a0a582b174fcfccb9c5274899cb05b664ccb92bf1d42caa58890947b68256","libm/src/math/sqrtf.rs":"da926ac27af6eecdf8b62d8baeefcfe1627110592e44298f6b7f05b7ac12fe7e","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"c889cfa49bbeb4dbb0941fe9fac3b4da7d5879dcf04a3b9bb6e56de529baf374","libm/src/math/tgammaf.rs":"0737b34777095d0e4d07fe533e8f105082dd4e8ece411bba6ae5993b45b9388c","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/aarch64.rs":"c414ad2cd6af35bf0bfe1ddd0d2e6e07a7a0051490e11346ad689436711e385c","src/aarch64_linux.rs":"a4bf136ba1624f253132a8588aac438ce23244a16655149320338ac980ad48cc","src/arm.rs":"d26d44f9e9a8b79b6b3a44373c454da401ce2040348de55688bb637d18d7672b","src/arm_linux.rs":"35a4cb7b75015543feb15b0c692da0faf0e6037d3b97a4a18067ba416eae1a70","src/float/add.rs":"cfb03a04c339054463e63db643455e61313079061759a85823d7a4ce44823837","src/float/cmp.rs":"01fae56128e062c9581d53f90b7d110c9c5083093690227b25bd412c5e17362e","src/float/conv.rs":"8bf710288f88cfbf67e510f68abbb5a4f7173d2ea9ef32f98d594935fc051641","src/float/div.rs":"84168e25b0d54f88efc993fd26d2296bd67db6bb531e466805e1fd8b89d76670","src/float/extend.rs":"259d9dee49297a0e28efbc522fa2b411b613e04eccbbc8a7e2dc6657eb93ff39","src/float/mod.rs":"a91cf65abb6e715c5559e3e4bd87a69cd99a9552d54804d0b7137c02c513f158","src/float/mul.rs":"482078b7098a407c395e07077299da6860a02a2b79125803481f66eb1bc18979","src/float/pow.rs":"dc05e1692e29c8e2f3bc7d4e525bd6249b07f6079e14f7cd12772f844ffb9365","src/float/sub.rs":"0bde7c682cf95f18731fcdfdb48b9185da592522946ae64dd0c29a8f9972d744","src/float/trunc.rs":"d5b9204e5d93331996e6e87c8f034ce69f8c273e8cfdd6760275789b9894226f","src/hexagon.rs":"bc42fc9f4749cff1350bb19326bff97ae2f9cceedb72bf1e90d9b59a93727f82","src/hexagon/dfaddsub.s":"4d100ac8e15559d635a7a59db7883a418ab678325448561e1771e60e8be572b6","src/hexagon/dfdiv.s":"80357702ad05cd3e9e5d2e9de622a4deee79c0cfa08876f66d5abc7fe23bb914","src/hexagon/dffma.s":"784b891716112ab1f2f4ecb462fbf39ca7700f4f06c4518d91d8ac157a8e2786","src/hexagon/dfminmax.s":"4aee42cfcafe2df910d2de7ab0b8c7ca36173496220ee79bc1c02d6adcbdedbb","src/hexagon/dfmul.s":"c05a8ac061e3a923704688dd7b15fd35e6dfceef88761f48ab126c290a624cf0","src/hexagon/dfsqrt.s":"7ecc42449aa3c45e6c8b0cbaa8dbf7eb3bdd125f8b20320cf13a9b5668f86c99","src/hexagon/divdi3.s":"21ff6787df365f9dc6fa92be9ca0d5fce4adc55ce7d43da227d60c590f42f879","src/hexagon/divsi3.s":"14da4a289e3b18a3240ba8f313904bca42e7b912fa288dbeda2ad57beabc8400","src/hexagon/fastmath2_dlib_asm.s":"2713a0d45d6f8496d85e81dc6b55e5ca669ab3610f7bd3d4d8aa63c866e8336d","src/hexagon/fastmath2_ldlib_asm.s":"1e5027fd6ab713efb39a29aac37be1b7e3b5d71cc6d65302b16ac60fad3d137a","src/hexagon/func_macro.s":"4d6248a31cea3d60e790a706725d9e587d758c047cfd6d3d6952d5da4b0d035d","src/hexagon/memcpy_forward_vp4cp4n2.s":"2ca2c807831258ccb58dd0f52f76230ea3b79cafd10a5dcca05e851c14e7ff41","src/hexagon/memcpy_likely_aligned.s":"5a2d2e938cb5dc4bdae743f9806978c4b24295c8ff168d5c62d0d3c126a3e6b5","src/hexagon/moddi3.s":"6feac04ab63f0ca9d1198cee321eecda844ca8c19340830c084129f71d8ec724","src/hexagon/modsi3.s":"457d070dbff8d10ed950a6dbc20c52f9e6d4518f73e1855ea596997c0924adf3","src/hexagon/sfdiv_opt.s":"ca13c3b24cfc7e3f6a73045584cfeb6fa670440958a38a5c80ad387586f52157","src/hexagon/sfsqrt_opt.s":"d9bf0ba9948eefc62c095f28b7c6b18f60c70ccfa95fd4db932fdb12c660721b","src/hexagon/udivdi3.s":"6cb96d73b59246431bba37e1f4c4003a8c1d4a059449e897c1282bcd90bcb7c5","src/hexagon/udivmoddi4.s":"f6e6e2eaedc32b6ac84a81c5dec2c4b054d123cbc749b9a1fdc4efdf598cdcb5","src/hexagon/udivmodsi4.s":"7b06ef270c1bd1b03d36863a3dc2f1fa67c44aa21a192e7e647c829658da4a11","src/hexagon/udivsi3.s":"66c0a1e5548b9c5e1ed850a76ad0baf505f1f594cdbd6e3ed27c2e64f90e629e","src/hexagon/umoddi3.s":"51cac49914d511ea9fd827b599d07d5f97eff885b88ef85ca767ffdf98c94798","src/hexagon/umodsi3.s":"24142f8cafd2aa903358176bbd67ef01c0cce0aa3ddb9a5ff1fd797d46e4a54b","src/int/addsub.rs":"89d9687f662a5cb7a57c9b42d056775c33e4f935b7285f5f1558c7ca4b605133","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"ead0733d605575eba996f94cdf804e5e6eaab290e213707a40278863b1889d30","src/int/sdiv.rs":"01d62e65f34ec0d3dbca41ea350e241367d4cf8dcc55882e09c701d4e84ae895","src/int/shift.rs":"ade15d5ede477e2cc21d7538ffe26efe45880bbfb6e3a2924e05c99b4b371b61","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"6bdb94c349705e68ca17ae6ac53a87658d2e0b1860ee72d73c53cc9d171062ae","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"3f6c132fecf9bec02e403e38c1c93ab4dc604819bec690e9a83c573cea40339b","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"e451ead3c1c8cf38c71288d7473d6fb47e567c33d07f68b39e91081b1dff346c","src/lib.rs":"4c3958a6a32520212ec0bc9c6f1d17c433cfdda3accba80955d79384f427df69","src/macros.rs":"33166bf8978961cf0179baa1e52148345414cfe6217bded4fbaa909a99f1a6d1","src/math.rs":"ff1c7c659f7dcf27dd968364a3675d62078e7ea74f72e25b04f6aa8d6f2d01c2","src/mem/impls.rs":"8b389b9aeb43dd55351a86abd4b5fc311f7161e1a4023ca3c5a4c57b49650881","src/mem/mod.rs":"714763d045a20e0a68c04f929d14fb3d7b28662dda4a2622970416642af833dc","src/mem/x86_64.rs":"2f29fb392086b3f7e2e78fcfcbf0f0e205822eb4599f1bdf93e41833e1bd2766","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"50ddd6c732a9f810ab6e15a97b22fdc94cfc1dea09c45d87c833937f9206bee0","src/x86.rs":"117b50d6725ee0af0a7b3d197ea580655561f66a870ebc450d96af22bf7f39f6","src/x86_64.rs":"aa26062784eff574fee4075d23b0ea2fdd1bdbc9a7458b099c8fd307ee61024f"},"package":"d68bc55329711cd719c2687bb147bc06211b0521f97ef398280108ccb23227e9"} \ No newline at end of file -+{"files":{"Cargo.lock":"4b1c972003a6b5173d5d394900fe4597a80ebf3700463aeca9e6c35ea2f765c7","Cargo.toml":"b75da75896d218b6ca3460febb5606c8dc55c730d54dce2554fa97bfb7068b41","LICENSE.txt":"0e13fed90654e0bc677d624a2d770833a09541fe0c0bdb3d051b3d081207393a","README.md":"795144b99a63dbc7408bdb462595f2315263083f75f87934a74ceeaaf5bbf902","build.rs":"c3d31731175775918d2e7b3e4c19457085be966b85992e33e75435bda32acd9f","examples/intrinsics.rs":"5a1b3dbebfb8bbf96a1e9001f04f31a6e408d0e384c6d2f71e2d79c0945e1be5","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"99de01ded7922bb93a882ad5ad8b472b5cae0059dea0bdca2077f65e94483150","libm/src/math/acoshf.rs":"10750c4d39ef6717b20a15ef1ce43e15eb851682d2f820f7e94501adec98b9a5","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"4dd51affa71cce34a192ad66154e248f8d1c4b40fb497f29052333e425bb740f","libm/src/math/asinhf.rs":"914bfecf449f5e2bce786aa12c056d419073c6011d41c1bab7c39ba765fa4c53","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"57a8fb3f0f116fa4a966ac6bc2abd5f80236ead8e79013f468bd3786921f7110","libm/src/math/atanhf.rs":"6f2e57aaec1b5fc7609cb3938b3d155f51b4237dbda530739c34a0448cd9beb9","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"8b6440a251f0f1509d87f18122f74d0d5c03d0b60517e89e441434a3c5d84591","libm/src/math/copysignf.rs":"87d35436d224852ada93a2e93f6730cf1a727b808dd10e7d49ab4585866e336b","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"de69e6669ce1014e5b5086a7a6d01c4755f2f0590e204d2a77bea455764114f7","libm/src/math/erff.rs":"6acdbb07f74296067bb0380b850918cfb5806a89f9ff04352a7a0b921d728944","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2e136c6ecedd8e57a6c31796f57fae4546fcfd8bc6be66c836f553df9c74b907","libm/src/math/exp10f.rs":"9a3ce506ec587066a355ab74e0eb69a03a214ac405718087ae9772365050b20b","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"916ae11e4763588518d64dee82afb41be9d1ee38ecc0679c821d4e7e22cd3dc5","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d87963472cd5bfcb83eb4010c67f3653857cf28f11378e06d63abae14c723e5d","libm/src/math/fmaf.rs":"1db6ee0d47ddbdb441cfe167edf89b431239f5805708fd0376cf5c01349a4bd6","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"d178ad7ca3439f82d565962b143f20448e45b2e2c51357b127abaec683297e32","libm/src/math/ilogbf.rs":"00f2b1b0496e21c6a42d68aea74d7156fa2ff0a735741b9051f3ca1cf0f57586","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"0edd18e4f96bfcbe8b1b5af3eeca5208cd6d2d479dfa5ad117c9dfeccecf614f","libm/src/math/lgamma_r.rs":"f44a37aeccd56559ef784ae8edf217d14ad5cc2d910f0a65e70ffc86d7dc23dd","libm/src/math/lgammaf.rs":"967845357758b868a571857ec001f9f9154001110b8e97c08b6d10586bed9c49","libm/src/math/lgammaf_r.rs":"7143016d60e11fa235d53968125e57231b1104ce52149b5e1eed39629e0d1ff0","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"d694260529d51d0bc17f88ad557d852b9bb0bc3f7466cf7f62b679dc95ebba42","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"482f31ff4e4eacf885f6130ae26a1d59f76b382059d6c742f30e5036811d3ca8","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/rint.rs":"3b3cbdbe9c9390990bd90e45b5c839ab65cf820cdf936feabd64b23422359942","libm/src/math/rintf.rs":"43d979c3be5ac8f9f06853a0a5b707dc8e20a9aba2cbbc3a132db84c95c37a11","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"1cf62a16c215e367f51078a3ba23a3f257682032a8f3c657293029a886b18d82","libm/src/math/sincosf.rs":"b0f589e6ada8215944d7784f420c6721c90387d799e349ce7676674f3c475e75","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"5f3a0a582b174fcfccb9c5274899cb05b664ccb92bf1d42caa58890947b68256","libm/src/math/sqrtf.rs":"da926ac27af6eecdf8b62d8baeefcfe1627110592e44298f6b7f05b7ac12fe7e","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"c889cfa49bbeb4dbb0941fe9fac3b4da7d5879dcf04a3b9bb6e56de529baf374","libm/src/math/tgammaf.rs":"0737b34777095d0e4d07fe533e8f105082dd4e8ece411bba6ae5993b45b9388c","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/aarch64.rs":"c414ad2cd6af35bf0bfe1ddd0d2e6e07a7a0051490e11346ad689436711e385c","src/aarch64_linux.rs":"a4bf136ba1624f253132a8588aac438ce23244a16655149320338ac980ad48cc","src/arm.rs":"d26d44f9e9a8b79b6b3a44373c454da401ce2040348de55688bb637d18d7672b","src/arm_linux.rs":"35a4cb7b75015543feb15b0c692da0faf0e6037d3b97a4a18067ba416eae1a70","src/float/add.rs":"cfb03a04c339054463e63db643455e61313079061759a85823d7a4ce44823837","src/float/cmp.rs":"01fae56128e062c9581d53f90b7d110c9c5083093690227b25bd412c5e17362e","src/float/conv.rs":"8bf710288f88cfbf67e510f68abbb5a4f7173d2ea9ef32f98d594935fc051641","src/float/div.rs":"84168e25b0d54f88efc993fd26d2296bd67db6bb531e466805e1fd8b89d76670","src/float/extend.rs":"259d9dee49297a0e28efbc522fa2b411b613e04eccbbc8a7e2dc6657eb93ff39","src/float/mod.rs":"a91cf65abb6e715c5559e3e4bd87a69cd99a9552d54804d0b7137c02c513f158","src/float/mul.rs":"482078b7098a407c395e07077299da6860a02a2b79125803481f66eb1bc18979","src/float/pow.rs":"dc05e1692e29c8e2f3bc7d4e525bd6249b07f6079e14f7cd12772f844ffb9365","src/float/sub.rs":"0bde7c682cf95f18731fcdfdb48b9185da592522946ae64dd0c29a8f9972d744","src/float/trunc.rs":"d5b9204e5d93331996e6e87c8f034ce69f8c273e8cfdd6760275789b9894226f","src/hexagon.rs":"bc42fc9f4749cff1350bb19326bff97ae2f9cceedb72bf1e90d9b59a93727f82","src/hexagon/dfaddsub.s":"4d100ac8e15559d635a7a59db7883a418ab678325448561e1771e60e8be572b6","src/hexagon/dfdiv.s":"80357702ad05cd3e9e5d2e9de622a4deee79c0cfa08876f66d5abc7fe23bb914","src/hexagon/dffma.s":"784b891716112ab1f2f4ecb462fbf39ca7700f4f06c4518d91d8ac157a8e2786","src/hexagon/dfminmax.s":"4aee42cfcafe2df910d2de7ab0b8c7ca36173496220ee79bc1c02d6adcbdedbb","src/hexagon/dfmul.s":"c05a8ac061e3a923704688dd7b15fd35e6dfceef88761f48ab126c290a624cf0","src/hexagon/dfsqrt.s":"7ecc42449aa3c45e6c8b0cbaa8dbf7eb3bdd125f8b20320cf13a9b5668f86c99","src/hexagon/divdi3.s":"21ff6787df365f9dc6fa92be9ca0d5fce4adc55ce7d43da227d60c590f42f879","src/hexagon/divsi3.s":"14da4a289e3b18a3240ba8f313904bca42e7b912fa288dbeda2ad57beabc8400","src/hexagon/fastmath2_dlib_asm.s":"2713a0d45d6f8496d85e81dc6b55e5ca669ab3610f7bd3d4d8aa63c866e8336d","src/hexagon/fastmath2_ldlib_asm.s":"1e5027fd6ab713efb39a29aac37be1b7e3b5d71cc6d65302b16ac60fad3d137a","src/hexagon/func_macro.s":"4d6248a31cea3d60e790a706725d9e587d758c047cfd6d3d6952d5da4b0d035d","src/hexagon/memcpy_forward_vp4cp4n2.s":"2ca2c807831258ccb58dd0f52f76230ea3b79cafd10a5dcca05e851c14e7ff41","src/hexagon/memcpy_likely_aligned.s":"5a2d2e938cb5dc4bdae743f9806978c4b24295c8ff168d5c62d0d3c126a3e6b5","src/hexagon/moddi3.s":"6feac04ab63f0ca9d1198cee321eecda844ca8c19340830c084129f71d8ec724","src/hexagon/modsi3.s":"457d070dbff8d10ed950a6dbc20c52f9e6d4518f73e1855ea596997c0924adf3","src/hexagon/sfdiv_opt.s":"ca13c3b24cfc7e3f6a73045584cfeb6fa670440958a38a5c80ad387586f52157","src/hexagon/sfsqrt_opt.s":"d9bf0ba9948eefc62c095f28b7c6b18f60c70ccfa95fd4db932fdb12c660721b","src/hexagon/udivdi3.s":"6cb96d73b59246431bba37e1f4c4003a8c1d4a059449e897c1282bcd90bcb7c5","src/hexagon/udivmoddi4.s":"f6e6e2eaedc32b6ac84a81c5dec2c4b054d123cbc749b9a1fdc4efdf598cdcb5","src/hexagon/udivmodsi4.s":"7b06ef270c1bd1b03d36863a3dc2f1fa67c44aa21a192e7e647c829658da4a11","src/hexagon/udivsi3.s":"66c0a1e5548b9c5e1ed850a76ad0baf505f1f594cdbd6e3ed27c2e64f90e629e","src/hexagon/umoddi3.s":"51cac49914d511ea9fd827b599d07d5f97eff885b88ef85ca767ffdf98c94798","src/hexagon/umodsi3.s":"24142f8cafd2aa903358176bbd67ef01c0cce0aa3ddb9a5ff1fd797d46e4a54b","src/int/addsub.rs":"89d9687f662a5cb7a57c9b42d056775c33e4f935b7285f5f1558c7ca4b605133","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"ead0733d605575eba996f94cdf804e5e6eaab290e213707a40278863b1889d30","src/int/sdiv.rs":"01d62e65f34ec0d3dbca41ea350e241367d4cf8dcc55882e09c701d4e84ae895","src/int/shift.rs":"ade15d5ede477e2cc21d7538ffe26efe45880bbfb6e3a2924e05c99b4b371b61","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"6bdb94c349705e68ca17ae6ac53a87658d2e0b1860ee72d73c53cc9d171062ae","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"3f6c132fecf9bec02e403e38c1c93ab4dc604819bec690e9a83c573cea40339b","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"e451ead3c1c8cf38c71288d7473d6fb47e567c33d07f68b39e91081b1dff346c","src/lib.rs":"4c3958a6a32520212ec0bc9c6f1d17c433cfdda3accba80955d79384f427df69","src/macros.rs":"33166bf8978961cf0179baa1e52148345414cfe6217bded4fbaa909a99f1a6d1","src/math.rs":"ff1c7c659f7dcf27dd968364a3675d62078e7ea74f72e25b04f6aa8d6f2d01c2","src/mem/impls.rs":"8b389b9aeb43dd55351a86abd4b5fc311f7161e1a4023ca3c5a4c57b49650881","src/mem/mod.rs":"714763d045a20e0a68c04f929d14fb3d7b28662dda4a2622970416642af833dc","src/mem/x86_64.rs":"2f29fb392086b3f7e2e78fcfcbf0f0e205822eb4599f1bdf93e41833e1bd2766","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"50ddd6c732a9f810ab6e15a97b22fdc94cfc1dea09c45d87c833937f9206bee0","src/x86.rs":"15e6e8180d52761492423aa3a1284b6640bc3dee9ba030465ec0e15fe6cfe754","src/x86_64.rs":"13b5e010a0d45164844fda4ada4d4e965f422f2a27768b3ce495c637714cf66f"},"package":"3686cc48897ce1950aa70fd595bd2dc9f767a3c4cca4cd17b2cb52a2d37e6eb4"} ++{"files":{"Cargo.lock":"056c692491ce9649e4678a8f665e9ccf5e0c0d8e9ca16cb9ee9fddb1e1334e6c","Cargo.toml":"e327a1cb409854c017490feb53175e9cbb03b5e1f7b14e63b60976e76abc0cec","LICENSE.txt":"0e13fed90654e0bc677d624a2d770833a09541fe0c0bdb3d051b3d081207393a","README.md":"eb4b820d9ed114fc49f074338e0a81a22a794a75f2785d10dadd81c43b7ef30d","build.rs":"85f31d450b44d1f9e329e72a46d181a22e2933593407eeaaebb120453f82757f","examples/intrinsics.rs":"5a1b3dbebfb8bbf96a1e9001f04f31a6e408d0e384c6d2f71e2d79c0945e1be5","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"99de01ded7922bb93a882ad5ad8b472b5cae0059dea0bdca2077f65e94483150","libm/src/math/acoshf.rs":"10750c4d39ef6717b20a15ef1ce43e15eb851682d2f820f7e94501adec98b9a5","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"4dd51affa71cce34a192ad66154e248f8d1c4b40fb497f29052333e425bb740f","libm/src/math/asinhf.rs":"914bfecf449f5e2bce786aa12c056d419073c6011d41c1bab7c39ba765fa4c53","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"57a8fb3f0f116fa4a966ac6bc2abd5f80236ead8e79013f468bd3786921f7110","libm/src/math/atanhf.rs":"6f2e57aaec1b5fc7609cb3938b3d155f51b4237dbda530739c34a0448cd9beb9","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"8b6440a251f0f1509d87f18122f74d0d5c03d0b60517e89e441434a3c5d84591","libm/src/math/copysignf.rs":"87d35436d224852ada93a2e93f6730cf1a727b808dd10e7d49ab4585866e336b","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"de69e6669ce1014e5b5086a7a6d01c4755f2f0590e204d2a77bea455764114f7","libm/src/math/erff.rs":"6acdbb07f74296067bb0380b850918cfb5806a89f9ff04352a7a0b921d728944","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2e136c6ecedd8e57a6c31796f57fae4546fcfd8bc6be66c836f553df9c74b907","libm/src/math/exp10f.rs":"9a3ce506ec587066a355ab74e0eb69a03a214ac405718087ae9772365050b20b","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"916ae11e4763588518d64dee82afb41be9d1ee38ecc0679c821d4e7e22cd3dc5","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d87963472cd5bfcb83eb4010c67f3653857cf28f11378e06d63abae14c723e5d","libm/src/math/fmaf.rs":"1db6ee0d47ddbdb441cfe167edf89b431239f5805708fd0376cf5c01349a4bd6","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"d178ad7ca3439f82d565962b143f20448e45b2e2c51357b127abaec683297e32","libm/src/math/ilogbf.rs":"00f2b1b0496e21c6a42d68aea74d7156fa2ff0a735741b9051f3ca1cf0f57586","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"0edd18e4f96bfcbe8b1b5af3eeca5208cd6d2d479dfa5ad117c9dfeccecf614f","libm/src/math/lgamma_r.rs":"f44a37aeccd56559ef784ae8edf217d14ad5cc2d910f0a65e70ffc86d7dc23dd","libm/src/math/lgammaf.rs":"967845357758b868a571857ec001f9f9154001110b8e97c08b6d10586bed9c49","libm/src/math/lgammaf_r.rs":"7143016d60e11fa235d53968125e57231b1104ce52149b5e1eed39629e0d1ff0","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"d694260529d51d0bc17f88ad557d852b9bb0bc3f7466cf7f62b679dc95ebba42","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"482f31ff4e4eacf885f6130ae26a1d59f76b382059d6c742f30e5036811d3ca8","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/rint.rs":"3b3cbdbe9c9390990bd90e45b5c839ab65cf820cdf936feabd64b23422359942","libm/src/math/rintf.rs":"43d979c3be5ac8f9f06853a0a5b707dc8e20a9aba2cbbc3a132db84c95c37a11","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"1cf62a16c215e367f51078a3ba23a3f257682032a8f3c657293029a886b18d82","libm/src/math/sincosf.rs":"b0f589e6ada8215944d7784f420c6721c90387d799e349ce7676674f3c475e75","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"5f3a0a582b174fcfccb9c5274899cb05b664ccb92bf1d42caa58890947b68256","libm/src/math/sqrtf.rs":"da926ac27af6eecdf8b62d8baeefcfe1627110592e44298f6b7f05b7ac12fe7e","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"c889cfa49bbeb4dbb0941fe9fac3b4da7d5879dcf04a3b9bb6e56de529baf374","libm/src/math/tgammaf.rs":"0737b34777095d0e4d07fe533e8f105082dd4e8ece411bba6ae5993b45b9388c","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/aarch64.rs":"c414ad2cd6af35bf0bfe1ddd0d2e6e07a7a0051490e11346ad689436711e385c","src/aarch64_linux.rs":"a4bf136ba1624f253132a8588aac438ce23244a16655149320338ac980ad48cc","src/arm.rs":"d26d44f9e9a8b79b6b3a44373c454da401ce2040348de55688bb637d18d7672b","src/arm_linux.rs":"35a4cb7b75015543feb15b0c692da0faf0e6037d3b97a4a18067ba416eae1a70","src/float/add.rs":"cfb03a04c339054463e63db643455e61313079061759a85823d7a4ce44823837","src/float/cmp.rs":"01fae56128e062c9581d53f90b7d110c9c5083093690227b25bd412c5e17362e","src/float/conv.rs":"8bf710288f88cfbf67e510f68abbb5a4f7173d2ea9ef32f98d594935fc051641","src/float/div.rs":"84168e25b0d54f88efc993fd26d2296bd67db6bb531e466805e1fd8b89d76670","src/float/extend.rs":"259d9dee49297a0e28efbc522fa2b411b613e04eccbbc8a7e2dc6657eb93ff39","src/float/mod.rs":"a91cf65abb6e715c5559e3e4bd87a69cd99a9552d54804d0b7137c02c513f158","src/float/mul.rs":"482078b7098a407c395e07077299da6860a02a2b79125803481f66eb1bc18979","src/float/pow.rs":"dc05e1692e29c8e2f3bc7d4e525bd6249b07f6079e14f7cd12772f844ffb9365","src/float/sub.rs":"0bde7c682cf95f18731fcdfdb48b9185da592522946ae64dd0c29a8f9972d744","src/float/trunc.rs":"d5b9204e5d93331996e6e87c8f034ce69f8c273e8cfdd6760275789b9894226f","src/hexagon.rs":"bc42fc9f4749cff1350bb19326bff97ae2f9cceedb72bf1e90d9b59a93727f82","src/hexagon/dfaddsub.s":"4d100ac8e15559d635a7a59db7883a418ab678325448561e1771e60e8be572b6","src/hexagon/dfdiv.s":"80357702ad05cd3e9e5d2e9de622a4deee79c0cfa08876f66d5abc7fe23bb914","src/hexagon/dffma.s":"784b891716112ab1f2f4ecb462fbf39ca7700f4f06c4518d91d8ac157a8e2786","src/hexagon/dfminmax.s":"4aee42cfcafe2df910d2de7ab0b8c7ca36173496220ee79bc1c02d6adcbdedbb","src/hexagon/dfmul.s":"c05a8ac061e3a923704688dd7b15fd35e6dfceef88761f48ab126c290a624cf0","src/hexagon/dfsqrt.s":"7ecc42449aa3c45e6c8b0cbaa8dbf7eb3bdd125f8b20320cf13a9b5668f86c99","src/hexagon/divdi3.s":"21ff6787df365f9dc6fa92be9ca0d5fce4adc55ce7d43da227d60c590f42f879","src/hexagon/divsi3.s":"14da4a289e3b18a3240ba8f313904bca42e7b912fa288dbeda2ad57beabc8400","src/hexagon/fastmath2_dlib_asm.s":"2713a0d45d6f8496d85e81dc6b55e5ca669ab3610f7bd3d4d8aa63c866e8336d","src/hexagon/fastmath2_ldlib_asm.s":"1e5027fd6ab713efb39a29aac37be1b7e3b5d71cc6d65302b16ac60fad3d137a","src/hexagon/func_macro.s":"4d6248a31cea3d60e790a706725d9e587d758c047cfd6d3d6952d5da4b0d035d","src/hexagon/memcpy_forward_vp4cp4n2.s":"2ca2c807831258ccb58dd0f52f76230ea3b79cafd10a5dcca05e851c14e7ff41","src/hexagon/memcpy_likely_aligned.s":"5a2d2e938cb5dc4bdae743f9806978c4b24295c8ff168d5c62d0d3c126a3e6b5","src/hexagon/moddi3.s":"6feac04ab63f0ca9d1198cee321eecda844ca8c19340830c084129f71d8ec724","src/hexagon/modsi3.s":"457d070dbff8d10ed950a6dbc20c52f9e6d4518f73e1855ea596997c0924adf3","src/hexagon/sfdiv_opt.s":"ca13c3b24cfc7e3f6a73045584cfeb6fa670440958a38a5c80ad387586f52157","src/hexagon/sfsqrt_opt.s":"d9bf0ba9948eefc62c095f28b7c6b18f60c70ccfa95fd4db932fdb12c660721b","src/hexagon/udivdi3.s":"6cb96d73b59246431bba37e1f4c4003a8c1d4a059449e897c1282bcd90bcb7c5","src/hexagon/udivmoddi4.s":"f6e6e2eaedc32b6ac84a81c5dec2c4b054d123cbc749b9a1fdc4efdf598cdcb5","src/hexagon/udivmodsi4.s":"7b06ef270c1bd1b03d36863a3dc2f1fa67c44aa21a192e7e647c829658da4a11","src/hexagon/udivsi3.s":"66c0a1e5548b9c5e1ed850a76ad0baf505f1f594cdbd6e3ed27c2e64f90e629e","src/hexagon/umoddi3.s":"51cac49914d511ea9fd827b599d07d5f97eff885b88ef85ca767ffdf98c94798","src/hexagon/umodsi3.s":"24142f8cafd2aa903358176bbd67ef01c0cce0aa3ddb9a5ff1fd797d46e4a54b","src/int/addsub.rs":"89d9687f662a5cb7a57c9b42d056775c33e4f935b7285f5f1558c7ca4b605133","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"ead0733d605575eba996f94cdf804e5e6eaab290e213707a40278863b1889d30","src/int/sdiv.rs":"01d62e65f34ec0d3dbca41ea350e241367d4cf8dcc55882e09c701d4e84ae895","src/int/shift.rs":"ade15d5ede477e2cc21d7538ffe26efe45880bbfb6e3a2924e05c99b4b371b61","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"6bdb94c349705e68ca17ae6ac53a87658d2e0b1860ee72d73c53cc9d171062ae","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"3f6c132fecf9bec02e403e38c1c93ab4dc604819bec690e9a83c573cea40339b","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"e451ead3c1c8cf38c71288d7473d6fb47e567c33d07f68b39e91081b1dff346c","src/lib.rs":"4c3958a6a32520212ec0bc9c6f1d17c433cfdda3accba80955d79384f427df69","src/macros.rs":"33166bf8978961cf0179baa1e52148345414cfe6217bded4fbaa909a99f1a6d1","src/math.rs":"ff1c7c659f7dcf27dd968364a3675d62078e7ea74f72e25b04f6aa8d6f2d01c2","src/mem/impls.rs":"8b389b9aeb43dd55351a86abd4b5fc311f7161e1a4023ca3c5a4c57b49650881","src/mem/mod.rs":"714763d045a20e0a68c04f929d14fb3d7b28662dda4a2622970416642af833dc","src/mem/x86_64.rs":"2f29fb392086b3f7e2e78fcfcbf0f0e205822eb4599f1bdf93e41833e1bd2766","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"50ddd6c732a9f810ab6e15a97b22fdc94cfc1dea09c45d87c833937f9206bee0","src/x86.rs":"0dbd91315f801608161a2f16f1903e1e80db81e101b05a7d20181e00e2e53ef0","src/x86_64.rs":"13b5e010a0d45164844fda4ada4d4e965f422f2a27768b3ce495c637714cf66f"},"package":"d68bc55329711cd719c2687bb147bc06211b0521f97ef398280108ccb23227e9"} \ No newline at end of file diff --git a/mingw-w64-rust/PKGBUILD b/mingw-w64-rust/PKGBUILD index b0619bbd70d2c..e345a3b97cd5e 100644 --- a/mingw-w64-rust/PKGBUILD +++ b/mingw-w64-rust/PKGBUILD @@ -18,7 +18,7 @@ _realname=rust pkgbase=mingw-w64-${_realname} pkgname=("${MINGW_PACKAGE_PREFIX}-${_realname}" $([[ ${CARCH} == i686 ]] || echo "${MINGW_PACKAGE_PREFIX}-rust-docs")) -pkgver=1.77.2 +pkgver=1.78.0 pkgrel=1 pkgdesc="Systems programming language focused on safety, speed and concurrency (mingw-w64)" arch=('any') @@ -45,7 +45,8 @@ makedepends=("${MINGW_PACKAGE_PREFIX}-cc" "${MINGW_PACKAGE_PREFIX}-zlib") source=("${rust_dist_server}/${_realname}c-${pkgver}-src.tar.gz"{,.asc} "${embed_manifest_url}" - "https://github.com/rust-lang/compiler-builtins/commit/67c1c0a71a204c089ddae4aec21ec75aa778c11b.patch" + "https://github.com/rust-lang/compiler-builtins/commit/d8ab794ed61e2c7c0750f57332a680d5aa8db48c.patch" + "https://github.com/rust-lang/compiler-builtins/commit/3f47913bc6414bab4254d49f9f6e7238fecace69.patch" "0001-rustc-llvm-fix-libs.patch" "0005-win32-config.patch" "0007-clang-subsystem.patch" @@ -54,17 +55,18 @@ source=("${rust_dist_server}/${_realname}c-${pkgver}-src.tar.gz"{,.asc} "0012-vendor-embed-manifest.patch" "0013-backport-compiler-builtins.patch") noextract=(${_realname}c-${pkgver}-src.tar.gz) -sha256sums=('c61457ef8f596638fddbc7716778b2f6b99ff12513a3b0f13994c3bc521638c3' +sha256sums=('ff544823a5cb27f2738128577f1e7e00ee8f4c83f2a348781ae4fc355e91d5a9' 'SKIP' - 'f1c65919a5f182376ecbfed69f72935abbebad5dc62bd32b2038905258c49453' - '1c7be19d408a98fcb94ee77085d34901a30f1fcc1b79bc59d02bc48f655df6eb' + '24ef6d949c0b5b1940c1d6a7aad78d86012152fb8845a1644bc939350d7b75e2' + '0426bc2a82f56ddabc0646100891bc61b9a57f4b7aec9f45aff40d7ba081db4f' + 'b888615732b1c9b0d4e8459cc9bd7ffb8afbf13bab840c2d345dc1492a63c9c3' '7cb1773c288ffb1c1e751edc49b1890c84bf9c362742bc5225d19d474edb73a0' '7d1c4e49524b835a8eadc961b39f5594b12a522a1e24368999be2c7e85399e4e' - '1f668f4aed56060ec74fd53a39da1fbaef69b84de510d955baf349db672a8d15' + '46b63be79e4f2d5da2b183ed963429bce22966227bf24a73b158d23875841b11' '7a3b5722ff576b0661f36796f088dee4ce318b5dbc3fdcd65b48972de68a0edf' '761d73328d9695a7a2bd2a10be8225f4a56801fee54cbb51c0841b7f16e2bde6' - '358de2f3e54afbe4aefd401725227becf2468763b7686c5d4fed3b71d1e95ce9' - '56e3433e37ecebe4e5eba1be8debb3e34451be22a00e345ee738bbeb37803092') + '23fc45f4e718770375be1c5196f035075de16d25e8f895100a3d1d2492995f86' + '465cb553e9dbaf176ad7b2e9bf7ebd8e481551cf2e8bbb8ba41c80acb28b3ed1') validpgpkeys=('108F66205EAEB0AAA8DD5E1C85AB96E6FA1BE5FE' # Rust Language (Tag and Release Signing Key) '474E22316ABF4785A88C6E8EA2C794A986419D8A' # Tom Stellard 'B6C8F98282B944E3B0D5C2530FC3042E345AD05D') # Hans Wennborg @@ -120,7 +122,8 @@ prepare() { # backport required for CLANG32 to build with compiler-rt 18.1.0 (cd vendor/compiler_builtins && \ apply_patch_with_msg \ - 67c1c0a71a204c089ddae4aec21ec75aa778c11b.patch) + d8ab794ed61e2c7c0750f57332a680d5aa8db48c.patch \ + 3f47913bc6414bab4254d49f9f6e7238fecace69.patch) # still needs to patch .cargo-checksums.json apply_patch_with_msg \ 0013-backport-compiler-builtins.patch