diff --git a/README.md b/README.md index 170460ad1..137cf95e4 100644 --- a/README.md +++ b/README.md @@ -33,8 +33,8 @@ Finch supports a wide variety of array structure beyond sparsity. Whether you're | Feature/Structure | Example Usage | |-------------------|---------------| -| Major Sparse Formats and Structured Arrays | `A = Tensorr(Dense(SparseList(Element(0.0)), 3, 4)`| -| Background Values Other Than Zero | `B = Tensorr(SparseList(Element(1.0)), 9)`| +| Major Sparse Formats and Structured Arrays | `A = Tensor(Dense(SparseList(Element(0.0)), 3, 4)`| +| Background Values Other Than Zero | `B = Tensor(SparseList(Element(1.0)), 9)`| | Broadcasts and Reductions | `sum(A .* B)`| | Custom Operators | `x[] <>= y[i] + z[i]`| | Multiple Outputs | `x[] <>= y[i]; z[] <>= y[i]`| @@ -64,7 +64,7 @@ Below is a Julia program using Finch to compute the minimum, maximum, sum, and v ```julia using Finch -X = Tensorr(SparseList(Element(0.0)), fsprand(10, 0.5)) +X = Tensor(SparseList(Element(0.0)), fsprand(10, 0.5)) x_min = Scalar(Inf) x_max = Scalar(-Inf) x_sum = Scalar(0.0) @@ -87,9 +87,9 @@ end; As a more traditional example, what follows is a sparse matrix-vector multiplication using a column-major approach. ```julia -x = Tensorr(Dense(Element(0.0)), rand(42)); -A = Tensorr(Dense(SparseList(Element(0.0))), fsprand(42, 42, 0.1)); -y = Tensorr(Dense(Element(0.0))); +x = Tensor(Dense(Element(0.0)), rand(42)); +A = Tensor(Dense(SparseList(Element(0.0))), fsprand(42, 42, 0.1)); +y = Tensor(Dense(Element(0.0))); @finch begin y .= 0