forked from noterminusgit/statarb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrating_diff.py
156 lines (116 loc) · 5.93 KB
/
rating_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
from regress import *
from loaddata import *
from util import *
from pandas.stats.moments import ewma
def wavg(group):
b = group['pbeta']
d = group['log_ret']
w = group['mkt_cap_y'] / 1e6
print "Mkt return: {} {}".format(group['gdate'], ((d * w).sum() / w.sum()))
res = b * ((d * w).sum() / w.sum())
return res
def calc_rtg_daily(daily_df, horizon):
print "Caculating daily rtg..."
result_df = filter_expandable(daily_df)
print "Calculating rtg0..."
# result_df['cum_ret'] = pd.rolling_sum(result_df['log_ret'], 6)
# result_df['med_diff'] = result_df['median'].unstack().diff().stack()
# result_df['rtg0'] = -1.0 * (result_df['median'] - 3) / ( 1.0 + result_df['std'] )
# result_df['rtg0'] = -1 * result_df['mean'] * np.abs(result_df['mean'])
# result_df['rtg0'] = -1.0 * result_df['med_diff_dk'] * result_df['cum_ret']
result_df['std_diff'] = result_df['rating_std'].unstack().diff().stack()
print "SEAN"
print result_df['rating_diff_mean'].describe()
result_df.loc[ (result_df['std_diff'] <= 0) | (result_df['std_diff'].isnull()), 'rating_diff_mean'] = 0
print result_df['rating_diff_mean'].describe()
print "SEAN2"
print result_df.xs(10000708, level=1)
result_df['rtg0'] = result_df['rating_diff_mean'] #* result_df['rating_diff_mean'] * np.sign(result_df['rating_diff_mean'])
# result_df['rtg0'] = -1.0 * result_df['med_diff_dk']
# demean = lambda x: (x - x.mean())
# indgroups = result_df[['rtg0', 'gdate', 'ind1']].groupby(['gdate', 'ind1'], sort=True).transform(demean)
# result_df['rtg0_ma'] = indgroups['rtg0']
result_df['rtg0_ma'] = result_df['rtg0']
for lag in range(1,horizon+1):
shift_df = result_df.unstack().shift(lag).stack()
result_df['rtg'+str(lag)+'_ma'] = shift_df['rtg0_ma']
return result_df
def rtg_fits(daily_df, horizon, name, middate=None):
insample_daily_df = daily_df
if middate is not None:
insample_daily_df = daily_df[ daily_df.index.get_level_values('date') < middate ]
outsample_daily_df = daily_df[ daily_df.index.get_level_values('date') >= middate ]
outsample_daily_df['rtg'] = np.nan
fits_df = pd.DataFrame(columns=['horizon', 'coef', 'indep', 'tstat', 'nobs', 'stderr'])
for ii in range(1, horizon+1):
fitresults_df = regress_alpha(insample_daily_df, 'rtg0_ma', ii, True, 'daily', False)
fits_df = fits_df.append(fitresults_df, ignore_index=True)
plot_fit(fits_df, "rtg_daily_"+name+"_" + df_dates(insample_daily_df))
fits_df.set_index(keys=['indep', 'horizon'], inplace=True)
coef0 = fits_df.ix['rtg0_ma'].ix[horizon].ix['coef']
print "Coef{}: {}".format(0, coef0)
outsample_daily_df[ 'rtg0_ma_coef' ] = coef0
outsample_daily_df[ 'rtg' ] = outsample_daily_df['rtg0_ma'].fillna(0) * outsample_daily_df['rtg0_ma_coef']
for lag in range(1,horizon):
weight = (horizon - lag) / float(horizon)
lagname = 'rtg'+str(lag)+'_ma'
print "Running lag {} with weight: {}".format(lag, weight)
outsample_daily_df[ 'rtg'] += outsample_daily_df[lagname].fillna(0) * outsample_daily_df['rtg0_ma_coef'] * weight
print "Alpha Summary {}".format(name)
print outsample_daily_df['rtg'].describe()
return outsample_daily_df
def calc_rtg_forecast(daily_df, horizon, middate):
daily_results_df = calc_rtg_daily(daily_df, horizon)
forwards_df = calc_forward_returns(daily_df, horizon)
daily_results_df = pd.concat( [daily_results_df, forwards_df], axis=1)
# results = list()
# for sector_name in daily_results_df['sector_name'].dropna().unique():
# if sector_name == "Utilities" or sector_name == "HealthCare": continue
# print "Running rtg for sector {}".format(sector_name)
# sector_df = daily_results_df[ daily_results_df['sector_name'] == sector_name ]
# result_df = rtg_fits(sector_df, horizon, sector_name, middate)
# results.append(result_df)
# result_df = pd.concat(results, verify_integrity=True)
result_df = rtg_fits(daily_results_df, horizon, "", middate)
# res1 = rtg_fits( daily_results_df[ daily_results_df['rating_diff_mean'] > 0 ], horizon, "up", middate)
# res2 = rtg_fits( daily_results_df[ daily_results_df['rating_diff_mean'] < 0 ], horizon, "dn", middate)
# result_df = pd.concat([res1, res2], verify_integrity=True)
return result_df
if __name__=="__main__":
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--mid",action="store",dest="mid",default=None)
parser.add_argument("--lag",action="store",dest="lag",default=6)
# parser.add_argument("--horizon",action="store",dest="horizon",default=20)
args = parser.parse_args()
start = args.start
end = args.end
lookback = 30
horizon = int(args.lag)
pname = "./rtg" + start + "." + end
start = dateparser.parse(start)
end = dateparser.parse(end)
middate = dateparser.parse(args.mid)
lag = int(args.lag)
loaded = False
try:
daily_df = pd.read_hdf(pname+"_daily.h5", 'table')
loaded = True
except:
print "Did not load cached data..."
if not loaded:
uni_df = get_uni(start, end, lookback)
BARRA_COLS = ['ind1']
barra_df = load_barra(uni_df, start, end, BARRA_COLS)
PRICE_COLS = ['close']
price_df = load_prices(uni_df, start, end, PRICE_COLS)
daily_df = merge_barra_data(price_df, barra_df)
analyst_df = load_ratings_hist(price_df[['ticker']], start, end)
daily_df = merge_daily_calcs(analyst_df, daily_df)
daily_df.to_hdf(pname+"_daily.h5", 'table', complib='zlib')
result_df = calc_rtg_forecast(daily_df, horizon, middate)
print "Total Alpha Summary"
print result_df['rtg'].describe()
dump_daily_alpha(result_df, 'rtg')