-
Notifications
You must be signed in to change notification settings - Fork 523
/
Copy pathsokol_shape.h
1431 lines (1244 loc) · 54.8 KB
/
sokol_shape.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#if defined(SOKOL_IMPL) && !defined(SOKOL_SHAPE_IMPL)
#define SOKOL_SHAPE_IMPL
#endif
#ifndef SOKOL_SHAPE_INCLUDED
/*
sokol_shape.h -- create simple primitive shapes for sokol_gfx.h
Project URL: https://github.com/floooh/sokol
Do this:
#define SOKOL_IMPL or
#define SOKOL_SHAPE_IMPL
before you include this file in *one* C or C++ file to create the
implementation.
Include the following headers before including sokol_shape.h:
sokol_gfx.h
...optionally provide the following macros to override defaults:
SOKOL_ASSERT(c) - your own assert macro (default: assert(c))
SOKOL_SHAPE_API_DECL- public function declaration prefix (default: extern)
SOKOL_API_DECL - same as SOKOL_SHAPE_API_DECL
SOKOL_API_IMPL - public function implementation prefix (default: -)
If sokol_shape.h is compiled as a DLL, define the following before
including the declaration or implementation:
SOKOL_DLL
On Windows, SOKOL_DLL will define SOKOL_SHAPE_API_DECL as __declspec(dllexport)
or __declspec(dllimport) as needed.
FEATURE OVERVIEW
================
sokol_shape.h creates vertices and indices for simple shapes and
builds structs which can be plugged into sokol-gfx resource
creation functions:
The following shape types are supported:
- plane
- cube
- sphere (with poles, not geodesic)
- cylinder
- torus (donut)
Generated vertices look like this:
typedef struct sshape_vertex_t {
float x, y, z;
uint32_t normal; // packed normal as BYTE4N
uint16_t u, v; // packed uv coords as USHORT2N
uint32_t color; // packed color as UBYTE4N (r,g,b,a);
} sshape_vertex_t;
Indices are generally 16-bits wide (SG_INDEXTYPE_UINT16) and the indices
are written as triangle-lists (SG_PRIMITIVETYPE_TRIANGLES).
EXAMPLES:
=========
Create multiple shapes into the same vertex- and index-buffer and
render with separate draw calls:
https://github.com/floooh/sokol-samples/blob/master/sapp/shapes-sapp.c
Same as the above, but pre-transform shapes and merge them into a single
shape that's rendered with a single draw call.
https://github.com/floooh/sokol-samples/blob/master/sapp/shapes-transform-sapp.c
STEP-BY-STEP:
=============
Setup an sshape_buffer_t struct with pointers to memory buffers where
generated vertices and indices will be written to:
```c
sshape_vertex_t vertices[512];
uint16_t indices[4096];
sshape_buffer_t buf = {
.vertices = {
.buffer = SSHAPE_RANGE(vertices),
},
.indices = {
.buffer = SSHAPE_RANGE(indices),
}
};
```
To find out how big those memory buffers must be (in case you want
to allocate dynamically) call the following functions:
```c
sshape_sizes_t sshape_plane_sizes(uint32_t tiles);
sshape_sizes_t sshape_box_sizes(uint32_t tiles);
sshape_sizes_t sshape_sphere_sizes(uint32_t slices, uint32_t stacks);
sshape_sizes_t sshape_cylinder_sizes(uint32_t slices, uint32_t stacks);
sshape_sizes_t sshape_torus_sizes(uint32_t sides, uint32_t rings);
```
The returned sshape_sizes_t struct contains vertex- and index-counts
as well as the equivalent buffer sizes in bytes. For instance:
```c
sshape_sizes_t sizes = sshape_sphere_sizes(36, 12);
uint32_t num_vertices = sizes.vertices.num;
uint32_t num_indices = sizes.indices.num;
uint32_t vertex_buffer_size = sizes.vertices.size;
uint32_t index_buffer_size = sizes.indices.size;
```
With the sshape_buffer_t struct that was setup earlier, call any
of the shape-builder functions:
```c
sshape_buffer_t sshape_build_plane(const sshape_buffer_t* buf, const sshape_plane_t* params);
sshape_buffer_t sshape_build_box(const sshape_buffer_t* buf, const sshape_box_t* params);
sshape_buffer_t sshape_build_sphere(const sshape_buffer_t* buf, const sshape_sphere_t* params);
sshape_buffer_t sshape_build_cylinder(const sshape_buffer_t* buf, const sshape_cylinder_t* params);
sshape_buffer_t sshape_build_torus(const sshape_buffer_t* buf, const sshape_torus_t* params);
```
Note how the sshape_buffer_t struct is both an input value and the
return value. This can be used to append multiple shapes into the
same vertex- and index-buffers (more on this later).
The second argument is a struct which holds creation parameters.
For instance to build a sphere with radius 2, 36 "cake slices" and 12 stacks:
```c
sshape_buffer_t buf = ...;
buf = sshape_build_sphere(&buf, &(sshape_sphere_t){
.radius = 2.0f,
.slices = 36,
.stacks = 12,
});
```
If the provided buffers are big enough to hold all generated vertices and
indices, the "valid" field in the result will be true:
```c
assert(buf.valid);
```
The shape creation parameters have "useful defaults", refer to the
actual C struct declarations below to look up those defaults.
You can also provide additional creation parameters, like a common vertex
color, a debug-helper to randomize colors, tell the shape builder function
to merge the new shape with the previous shape into the same draw-element-range,
or a 4x4 transform matrix to move, rotate and scale the generated vertices:
```c
sshape_buffer_t buf = ...;
buf = sshape_build_sphere(&buf, &(sshape_sphere_t){
.radius = 2.0f,
.slices = 36,
.stacks = 12,
// merge with previous shape into a single element-range
.merge = true,
// set vertex color to red+opaque
.color = sshape_color_4f(1.0f, 0.0f, 0.0f, 1.0f),
// set position to y = 2.0
.transform = {
.m = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 2.0f, 0.0f, 1.0f },
}
}
});
assert(buf.valid);
```
The following helper functions can be used to build a packed
color value or to convert from external matrix types:
```c
uint32_t sshape_color_4f(float r, float g, float b, float a);
uint32_t sshape_color_3f(float r, float g, float b);
uint32_t sshape_color_4b(uint8_t r, uint8_t g, uint8_t b, uint8_t a);
uint32_t sshape_color_3b(uint8_t r, uint8_t g, uint8_t b);
sshape_mat4_t sshape_mat4(const float m[16]);
sshape_mat4_t sshape_mat4_transpose(const float m[16]);
```
After the shape builder function has been called, the following functions
are used to extract the build result for plugging into sokol_gfx.h:
```c
sshape_element_range_t sshape_element_range(const sshape_buffer_t* buf);
sg_buffer_desc sshape_vertex_buffer_desc(const sshape_buffer_t* buf);
sg_buffer_desc sshape_index_buffer_desc(const sshape_buffer_t* buf);
sg_vertex_buffer_layout_state sshape_vertex_buffer_layout_state(void);
sg_vertex_attr_state sshape_position_vertex_attr_state(void);
sg_vertex_attr_state sshape_normal_vertex_attr_state(void);
sg_vertex_attr_state sshape_texcoord_vertex_attr_state(void);
sg_vertex_attr_state sshape_color_vertex_attr_state(void);
```
The sshape_element_range_t struct contains the base-index and number of
indices which can be plugged into the sg_draw() call:
```c
sshape_element_range_t elms = sshape_element_range(&buf);
...
sg_draw(elms.base_element, elms.num_elements, 1);
```
To create sokol-gfx vertex- and index-buffers from the generated
shape data:
```c
// create sokol-gfx vertex buffer
sg_buffer_desc vbuf_desc = sshape_vertex_buffer_desc(&buf);
sg_buffer vbuf = sg_make_buffer(&vbuf_desc);
// create sokol-gfx index buffer
sg_buffer_desc ibuf_desc = sshape_index_buffer_desc(&buf);
sg_buffer ibuf = sg_make_buffer(&ibuf_desc);
```
The remaining functions are used to populate the vertex-layout item
in sg_pipeline_desc, note that these functions don't depend on the
created geometry, they always return the same result:
```c
sg_pipeline pip = sg_make_pipeline(&(sg_pipeline_desc){
.layout = {
.buffers[0] = sshape_vertex_buffer_layout_state(),
.attrs = {
[0] = sshape_position_vertex_attr_state(),
[1] = ssape_normal_vertex_attr_state(),
[2] = sshape_texcoord_vertex_attr_state(),
[3] = sshape_color_vertex_attr_state()
}
},
...
});
```
Note that you don't have to use all generated vertex attributes in the
pipeline's vertex layout, the sg_vertex_buffer_layout_state struct returned
by sshape_vertex_buffer_layout_state() contains the correct vertex stride
to skip vertex components.
WRITING MULTIPLE SHAPES INTO THE SAME BUFFER
============================================
You can merge multiple shapes into the same vertex- and
index-buffers and either render them as a single shape, or
in separate draw calls.
To build a single shape made of two cubes which can be rendered
in a single draw-call:
```
sshape_vertex_t vertices[128];
uint16_t indices[16];
sshape_buffer_t buf = {
.vertices.buffer = SSHAPE_RANGE(vertices),
.indices.buffer = SSHAPE_RANGE(indices)
};
// first cube at pos x=-2.0 (with default size of 1x1x1)
buf = sshape_build_cube(&buf, &(sshape_box_t){
.transform = {
.m = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{-2.0f, 0.0f, 0.0f, 1.0f },
}
}
});
// ...and append another cube at pos pos=+1.0
// NOTE the .merge = true, this tells the shape builder
// function to not advance the current shape start offset
buf = sshape_build_cube(&buf, &(sshape_box_t){
.merge = true,
.transform = {
.m = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{-2.0f, 0.0f, 0.0f, 1.0f },
}
}
});
assert(buf.valid);
// skipping buffer- and pipeline-creation...
sshape_element_range_t elms = sshape_element_range(&buf);
sg_draw(elms.base_element, elms.num_elements, 1);
```
To render the two cubes in separate draw-calls, the element-ranges used
in the sg_draw() calls must be captured right after calling the
builder-functions:
```c
sshape_vertex_t vertices[128];
uint16_t indices[16];
sshape_buffer_t buf = {
.vertices.buffer = SSHAPE_RANGE(vertices),
.indices.buffer = SSHAPE_RANGE(indices)
};
// build a red cube...
buf = sshape_build_cube(&buf, &(sshape_box_t){
.color = sshape_color_3b(255, 0, 0)
});
sshape_element_range_t red_cube = sshape_element_range(&buf);
// append a green cube to the same vertex-/index-buffer:
buf = sshape_build_cube(&bud, &sshape_box_t){
.color = sshape_color_3b(0, 255, 0);
});
sshape_element_range_t green_cube = sshape_element_range(&buf);
// skipping buffer- and pipeline-creation...
sg_draw(red_cube.base_element, red_cube.num_elements, 1);
sg_draw(green_cube.base_element, green_cube.num_elements, 1);
```
...that's about all :)
LICENSE
=======
zlib/libpng license
Copyright (c) 2020 Andre Weissflog
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#define SOKOL_SHAPE_INCLUDED
#include <stddef.h> // size_t, offsetof
#include <stdint.h>
#include <stdbool.h>
#if !defined(SOKOL_GFX_INCLUDED)
#error "Please include sokol_gfx.h before sokol_shape.h"
#endif
#if defined(SOKOL_API_DECL) && !defined(SOKOL_SHAPE_API_DECL)
#define SOKOL_SHAPE_API_DECL SOKOL_API_DECL
#endif
#ifndef SOKOL_SHAPE_API_DECL
#if defined(_WIN32) && defined(SOKOL_DLL) && defined(SOKOL_SHAPE_IMPL)
#define SOKOL_SHAPE_API_DECL __declspec(dllexport)
#elif defined(_WIN32) && defined(SOKOL_DLL)
#define SOKOL_SHAPE_API_DECL __declspec(dllimport)
#else
#define SOKOL_SHAPE_API_DECL extern
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
sshape_range is a pointer-size-pair struct used to pass memory
blobs into sokol-shape. When initialized from a value type
(array or struct), use the SSHAPE_RANGE() macro to build
an sshape_range struct.
*/
typedef struct sshape_range {
const void* ptr;
size_t size;
} sshape_range;
// disabling this for every includer isn't great, but the warning is also quite pointless
#if defined(_MSC_VER)
#pragma warning(disable:4221) /* /W4 only: nonstandard extension used: 'x': cannot be initialized using address of automatic variable 'y' */
#endif
#if defined(__cplusplus)
#define SSHAPE_RANGE(x) sshape_range{ &x, sizeof(x) }
#else
#define SSHAPE_RANGE(x) (sshape_range){ &x, sizeof(x) }
#endif
/* a 4x4 matrix wrapper struct */
typedef struct sshape_mat4_t { float m[4][4]; } sshape_mat4_t;
/* vertex layout of the generated geometry */
typedef struct sshape_vertex_t {
float x, y, z;
uint32_t normal; // packed normal as BYTE4N
uint16_t u, v; // packed uv coords as USHORT2N
uint32_t color; // packed color as UBYTE4N (r,g,b,a);
} sshape_vertex_t;
/* a range of draw-elements (sg_draw(int base_element, int num_element, ...)) */
typedef struct sshape_element_range_t {
int base_element;
int num_elements;
} sshape_element_range_t;
/* number of elements and byte size of build actions */
typedef struct sshape_sizes_item_t {
uint32_t num; // number of elements
uint32_t size; // the same as size in bytes
} sshape_sizes_item_t;
typedef struct sshape_sizes_t {
sshape_sizes_item_t vertices;
sshape_sizes_item_t indices;
} sshape_sizes_t;
/* in/out struct to keep track of mesh-build state */
typedef struct sshape_buffer_item_t {
sshape_range buffer; // pointer/size pair of output buffer
size_t data_size; // size in bytes of valid data in buffer
size_t shape_offset; // data offset of the most recent shape
} sshape_buffer_item_t;
typedef struct sshape_buffer_t {
bool valid;
sshape_buffer_item_t vertices;
sshape_buffer_item_t indices;
} sshape_buffer_t;
/* creation parameters for the different shape types */
typedef struct sshape_plane_t {
float width, depth; // default: 1.0
uint16_t tiles; // default: 1
uint32_t color; // default: white
bool random_colors; // default: false
bool merge; // if true merge with previous shape (default: false)
sshape_mat4_t transform; // default: identity matrix
} sshape_plane_t;
typedef struct sshape_box_t {
float width, height, depth; // default: 1.0
uint16_t tiles; // default: 1
uint32_t color; // default: white
bool random_colors; // default: false
bool merge; // if true merge with previous shape (default: false)
sshape_mat4_t transform; // default: identity matrix
} sshape_box_t;
typedef struct sshape_sphere_t {
float radius; // default: 0.5
uint16_t slices; // default: 5
uint16_t stacks; // default: 4
uint32_t color; // default: white
bool random_colors; // default: false
bool merge; // if true merge with previous shape (default: false)
sshape_mat4_t transform; // default: identity matrix
} sshape_sphere_t;
typedef struct sshape_cylinder_t {
float radius; // default: 0.5
float height; // default: 1.0
uint16_t slices; // default: 5
uint16_t stacks; // default: 1
uint32_t color; // default: white
bool random_colors; // default: false
bool merge; // if true merge with previous shape (default: false)
sshape_mat4_t transform; // default: identity matrix
} sshape_cylinder_t;
typedef struct sshape_torus_t {
float radius; // default: 0.5f
float ring_radius; // default: 0.2f
uint16_t sides; // default: 5
uint16_t rings; // default: 5
uint32_t color; // default: white
bool random_colors; // default: false
bool merge; // if true merge with previous shape (default: false)
sshape_mat4_t transform; // default: identity matrix
} sshape_torus_t;
/* shape builder functions */
SOKOL_SHAPE_API_DECL sshape_buffer_t sshape_build_plane(const sshape_buffer_t* buf, const sshape_plane_t* params);
SOKOL_SHAPE_API_DECL sshape_buffer_t sshape_build_box(const sshape_buffer_t* buf, const sshape_box_t* params);
SOKOL_SHAPE_API_DECL sshape_buffer_t sshape_build_sphere(const sshape_buffer_t* buf, const sshape_sphere_t* params);
SOKOL_SHAPE_API_DECL sshape_buffer_t sshape_build_cylinder(const sshape_buffer_t* buf, const sshape_cylinder_t* params);
SOKOL_SHAPE_API_DECL sshape_buffer_t sshape_build_torus(const sshape_buffer_t* buf, const sshape_torus_t* params);
/* query required vertex- and index-buffer sizes in bytes */
SOKOL_SHAPE_API_DECL sshape_sizes_t sshape_plane_sizes(uint32_t tiles);
SOKOL_SHAPE_API_DECL sshape_sizes_t sshape_box_sizes(uint32_t tiles);
SOKOL_SHAPE_API_DECL sshape_sizes_t sshape_sphere_sizes(uint32_t slices, uint32_t stacks);
SOKOL_SHAPE_API_DECL sshape_sizes_t sshape_cylinder_sizes(uint32_t slices, uint32_t stacks);
SOKOL_SHAPE_API_DECL sshape_sizes_t sshape_torus_sizes(uint32_t sides, uint32_t rings);
/* extract sokol-gfx desc structs and primitive ranges from build state */
SOKOL_SHAPE_API_DECL sshape_element_range_t sshape_element_range(const sshape_buffer_t* buf);
SOKOL_SHAPE_API_DECL sg_buffer_desc sshape_vertex_buffer_desc(const sshape_buffer_t* buf);
SOKOL_SHAPE_API_DECL sg_buffer_desc sshape_index_buffer_desc(const sshape_buffer_t* buf);
SOKOL_SHAPE_API_DECL sg_vertex_buffer_layout_state sshape_vertex_buffer_layout_state(void);
SOKOL_SHAPE_API_DECL sg_vertex_attr_state sshape_position_vertex_attr_state(void);
SOKOL_SHAPE_API_DECL sg_vertex_attr_state sshape_normal_vertex_attr_state(void);
SOKOL_SHAPE_API_DECL sg_vertex_attr_state sshape_texcoord_vertex_attr_state(void);
SOKOL_SHAPE_API_DECL sg_vertex_attr_state sshape_color_vertex_attr_state(void);
/* helper functions to build packed color value from floats or bytes */
SOKOL_SHAPE_API_DECL uint32_t sshape_color_4f(float r, float g, float b, float a);
SOKOL_SHAPE_API_DECL uint32_t sshape_color_3f(float r, float g, float b);
SOKOL_SHAPE_API_DECL uint32_t sshape_color_4b(uint8_t r, uint8_t g, uint8_t b, uint8_t a);
SOKOL_SHAPE_API_DECL uint32_t sshape_color_3b(uint8_t r, uint8_t g, uint8_t b);
/* adapter function for filling matrix struct from generic float[16] array */
SOKOL_SHAPE_API_DECL sshape_mat4_t sshape_mat4(const float m[16]);
SOKOL_SHAPE_API_DECL sshape_mat4_t sshape_mat4_transpose(const float m[16]);
#ifdef __cplusplus
} // extern "C"
// FIXME: C++ helper functions
#endif
#endif // SOKOL_SHAPE_INCLUDED
/*-- IMPLEMENTATION ----------------------------------------------------------*/
#ifdef SOKOL_SHAPE_IMPL
#define SOKOL_SHAPE_IMPL_INCLUDED (1)
#include <string.h> // memcpy
#include <math.h> // sinf, cosf
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
#endif
#ifndef SOKOL_API_IMPL
#define SOKOL_API_IMPL
#endif
#ifndef SOKOL_ASSERT
#include <assert.h>
#define SOKOL_ASSERT(c) assert(c)
#endif
#define _sshape_def(val, def) (((val) == 0) ? (def) : (val))
#define _sshape_def_flt(val, def) (((val) == 0.0f) ? (def) : (val))
#define _sshape_white (0xFFFFFFFF)
typedef struct { float x, y, z, w; } _sshape_vec4_t;
typedef struct { float x, y; } _sshape_vec2_t;
static inline float _sshape_clamp(float v) {
if (v < 0.0f) return 0.0f;
else if (v > 1.0f) return 1.0f;
else return v;
}
static inline uint32_t _sshape_pack_ub4_ubyte4n(uint8_t x, uint8_t y, uint8_t z, uint8_t w) {
return (uint32_t)(((uint32_t)w<<24)|((uint32_t)z<<16)|((uint32_t)y<<8)|x);
}
static inline uint32_t _sshape_pack_f4_ubyte4n(float x, float y, float z, float w) {
uint8_t x8 = (uint8_t) (x * 255.0f);
uint8_t y8 = (uint8_t) (y * 255.0f);
uint8_t z8 = (uint8_t) (z * 255.0f);
uint8_t w8 = (uint8_t) (w * 255.0f);
return _sshape_pack_ub4_ubyte4n(x8, y8, z8, w8);
}
static inline uint32_t _sshape_pack_f4_byte4n(float x, float y, float z, float w) {
int8_t x8 = (int8_t) (x * 127.0f);
int8_t y8 = (int8_t) (y * 127.0f);
int8_t z8 = (int8_t) (z * 127.0f);
int8_t w8 = (int8_t) (w * 127.0f);
return _sshape_pack_ub4_ubyte4n((uint8_t)x8, (uint8_t)y8, (uint8_t)z8, (uint8_t)w8);
}
static inline uint16_t _sshape_pack_f_ushortn(float x) {
return (uint16_t) (x * 65535.0f);
}
static inline _sshape_vec4_t _sshape_vec4(float x, float y, float z, float w) {
_sshape_vec4_t v = { x, y, z, w };
return v;
}
static inline _sshape_vec4_t _sshape_vec4_norm(_sshape_vec4_t v) {
float l = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
if (l != 0.0f) {
return _sshape_vec4(v.x/l, v.y/l, v.z/l, v.w/l);
}
else {
return _sshape_vec4(0.0f, 1.0f, 0.0f, 0.0f);
}
}
static inline _sshape_vec2_t _sshape_vec2(float x, float y) {
_sshape_vec2_t v = { x, y };
return v;
}
static bool _sshape_mat4_isnull(const sshape_mat4_t* m) {
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
if (0.0f != m->m[y][x]) {
return false;
}
}
}
return true;
}
static sshape_mat4_t _sshape_mat4_identity(void) {
sshape_mat4_t m = {
{
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
}
};
return m;
}
static _sshape_vec4_t _sshape_mat4_mul(const sshape_mat4_t* m, _sshape_vec4_t v) {
_sshape_vec4_t res = {
m->m[0][0]*v.x + m->m[1][0]*v.y + m->m[2][0]*v.z + m->m[3][0]*v.w,
m->m[0][1]*v.x + m->m[1][1]*v.y + m->m[2][1]*v.z + m->m[3][1]*v.w,
m->m[0][2]*v.x + m->m[1][2]*v.y + m->m[2][2]*v.z + m->m[3][2]*v.w,
m->m[0][3]*v.x + m->m[1][3]*v.y + m->m[2][3]*v.z + m->m[3][3]*v.w
};
return res;
}
static uint32_t _sshape_plane_num_vertices(uint32_t tiles) {
return (tiles + 1) * (tiles + 1);
}
static uint32_t _sshape_plane_num_indices(uint32_t tiles) {
return tiles * tiles * 2 * 3;
}
static uint32_t _sshape_box_num_vertices(uint32_t tiles) {
return (tiles + 1) * (tiles + 1) * 6;
}
static uint32_t _sshape_box_num_indices(uint32_t tiles) {
return tiles * tiles * 2 * 6 * 3;
}
static uint32_t _sshape_sphere_num_vertices(uint32_t slices, uint32_t stacks) {
return (slices + 1) * (stacks + 1);
}
static uint32_t _sshape_sphere_num_indices(uint32_t slices, uint32_t stacks) {
return ((2 * slices * stacks) - (2 * slices)) * 3;
}
static uint32_t _sshape_cylinder_num_vertices(uint32_t slices, uint32_t stacks) {
return (slices + 1) * (stacks + 5);
}
static uint32_t _sshape_cylinder_num_indices(uint32_t slices, uint32_t stacks) {
return ((2 * slices * stacks) + (2 * slices)) * 3;
}
static uint32_t _sshape_torus_num_vertices(uint32_t sides, uint32_t rings) {
return (sides + 1) * (rings + 1);
}
static uint32_t _sshape_torus_num_indices(uint32_t sides, uint32_t rings) {
return sides * rings * 2 * 3;
}
static bool _sshape_validate_buffer_item(const sshape_buffer_item_t* item, uint32_t build_size) {
if (0 == item->buffer.ptr) {
return false;
}
if (0 == item->buffer.size) {
return false;
}
if ((item->data_size + build_size) > item->buffer.size) {
return false;
}
if (item->shape_offset > item->data_size) {
return false;
}
return true;
}
static bool _sshape_validate_buffer(const sshape_buffer_t* buf, uint32_t num_vertices, uint32_t num_indices) {
if (!_sshape_validate_buffer_item(&buf->vertices, num_vertices * sizeof(sshape_vertex_t))) {
return false;
}
if (!_sshape_validate_buffer_item(&buf->indices, num_indices * sizeof(uint16_t))) {
return false;
}
return true;
}
static void _sshape_advance_offset(sshape_buffer_item_t* item) {
item->shape_offset = item->data_size;
}
static uint16_t _sshape_base_index(const sshape_buffer_t* buf) {
return (uint16_t) (buf->vertices.data_size / sizeof(sshape_vertex_t));
}
static sshape_plane_t _sshape_plane_defaults(const sshape_plane_t* params) {
sshape_plane_t res = *params;
res.width = _sshape_def_flt(res.width, 1.0f);
res.depth = _sshape_def_flt(res.depth, 1.0f);
res.tiles = _sshape_def(res.tiles, 1);
res.color = _sshape_def(res.color, _sshape_white);
res.transform = _sshape_mat4_isnull(&res.transform) ? _sshape_mat4_identity() : res.transform;
return res;
}
static sshape_box_t _sshape_box_defaults(const sshape_box_t* params) {
sshape_box_t res = *params;
res.width = _sshape_def_flt(res.width, 1.0f);
res.height = _sshape_def_flt(res.height, 1.0f);
res.depth = _sshape_def_flt(res.depth, 1.0f);
res.tiles = _sshape_def(res.tiles, 1);
res.color = _sshape_def(res.color, _sshape_white);
res.transform = _sshape_mat4_isnull(&res.transform) ? _sshape_mat4_identity() : res.transform;
return res;
}
static sshape_sphere_t _sshape_sphere_defaults(const sshape_sphere_t* params) {
sshape_sphere_t res = *params;
res.radius = _sshape_def_flt(res.radius, 0.5f);
res.slices = _sshape_def(res.slices, 5);
res.stacks = _sshape_def(res.stacks, 4);
res.color = _sshape_def(res.color, _sshape_white);
res.transform = _sshape_mat4_isnull(&res.transform) ? _sshape_mat4_identity() : res.transform;
return res;
}
static sshape_cylinder_t _sshape_cylinder_defaults(const sshape_cylinder_t* params) {
sshape_cylinder_t res = *params;
res.radius = _sshape_def_flt(res.radius, 0.5f);
res.height = _sshape_def_flt(res.height, 1.0f);
res.slices = _sshape_def(res.slices, 5);
res.stacks = _sshape_def(res.stacks, 1);
res.color = _sshape_def(res.color, _sshape_white);
res.transform = _sshape_mat4_isnull(&res.transform) ? _sshape_mat4_identity() : res.transform;
return res;
}
static sshape_torus_t _sshape_torus_defaults(const sshape_torus_t* params) {
sshape_torus_t res = *params;
res.radius = _sshape_def_flt(res.radius, 0.5f);
res.ring_radius = _sshape_def_flt(res.ring_radius, 0.2f);
res.sides = _sshape_def_flt(res.sides, 5);
res.rings = _sshape_def_flt(res.rings, 5);
res.color = _sshape_def(res.color, _sshape_white);
res.transform = _sshape_mat4_isnull(&res.transform) ? _sshape_mat4_identity() : res.transform;
return res;
}
static void _sshape_add_vertex(sshape_buffer_t* buf, _sshape_vec4_t pos, _sshape_vec4_t norm, _sshape_vec2_t uv, uint32_t color) {
size_t offset = buf->vertices.data_size;
SOKOL_ASSERT((offset + sizeof(sshape_vertex_t)) <= buf->vertices.buffer.size);
buf->vertices.data_size += sizeof(sshape_vertex_t);
sshape_vertex_t* v_ptr = (sshape_vertex_t*) ((uint8_t*)buf->vertices.buffer.ptr + offset);
v_ptr->x = pos.x;
v_ptr->y = pos.y;
v_ptr->z = pos.z;
v_ptr->normal = _sshape_pack_f4_byte4n(norm.x, norm.y, norm.z, norm.w);
v_ptr->u = _sshape_pack_f_ushortn(uv.x);
v_ptr->v = _sshape_pack_f_ushortn(uv.y);
v_ptr->color = color;
}
static void _sshape_add_triangle(sshape_buffer_t* buf, uint16_t i0, uint16_t i1, uint16_t i2) {
size_t offset = buf->indices.data_size;
SOKOL_ASSERT((offset + 3*sizeof(uint16_t)) <= buf->indices.buffer.size);
buf->indices.data_size += 3*sizeof(uint16_t);
uint16_t* i_ptr = (uint16_t*) ((uint8_t*)buf->indices.buffer.ptr + offset);
i_ptr[0] = i0;
i_ptr[1] = i1;
i_ptr[2] = i2;
}
static uint32_t _sshape_rand_color(uint32_t* xorshift_state) {
// xorshift32
uint32_t x = *xorshift_state;
x ^= x<<13;
x ^= x>>17;
x ^= x<<5;
*xorshift_state = x;
// rand => bright color with alpha 1.0
x |= 0xFF000000;
return x;
}
/*=== PUBLIC API FUNCTIONS ===================================================*/
SOKOL_API_IMPL uint32_t sshape_color_4f(float r, float g, float b, float a) {
return _sshape_pack_f4_ubyte4n(_sshape_clamp(r), _sshape_clamp(g), _sshape_clamp(b), _sshape_clamp(a));
}
SOKOL_API_IMPL uint32_t sshape_color_3f(float r, float g, float b) {
return _sshape_pack_f4_ubyte4n(_sshape_clamp(r), _sshape_clamp(g), _sshape_clamp(b), 1.0f);
}
SOKOL_API_IMPL uint32_t sshape_color_4b(uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
return _sshape_pack_ub4_ubyte4n(r, g, b, a);
}
SOKOL_API_IMPL uint32_t sshape_color_3b(uint8_t r, uint8_t g, uint8_t b) {
return _sshape_pack_ub4_ubyte4n(r, g, b, 255);
}
SOKOL_API_IMPL sshape_mat4_t sshape_mat4(const float m[16]) {
sshape_mat4_t res;
memcpy(&res.m[0][0], &m[0], 64);
return res;
}
SOKOL_API_IMPL sshape_mat4_t sshape_mat4_transpose(const float m[16]) {
sshape_mat4_t res;
for (int c = 0; c < 4; c++) {
for (int r = 0; r < 4; r++) {
res.m[r][c] = m[c*4 + r];
}
}
return res;
}
SOKOL_API_IMPL sshape_sizes_t sshape_plane_sizes(uint32_t tiles) {
SOKOL_ASSERT(tiles >= 1);
sshape_sizes_t res = { {0} };
res.vertices.num = _sshape_plane_num_vertices(tiles);
res.indices.num = _sshape_plane_num_indices(tiles);
res.vertices.size = res.vertices.num * sizeof(sshape_vertex_t);
res.indices.size = res.indices.num * sizeof(uint16_t);
return res;
}
SOKOL_API_IMPL sshape_sizes_t sshape_box_sizes(uint32_t tiles) {
SOKOL_ASSERT(tiles >= 1);
sshape_sizes_t res = { {0} };
res.vertices.num = _sshape_box_num_vertices(tiles);
res.indices.num = _sshape_box_num_indices(tiles);
res.vertices.size = res.vertices.num * sizeof(sshape_vertex_t);
res.indices.size = res.indices.num * sizeof(uint16_t);
return res;
}
SOKOL_API_IMPL sshape_sizes_t sshape_sphere_sizes(uint32_t slices, uint32_t stacks) {
SOKOL_ASSERT((slices >= 3) && (stacks >= 2));
sshape_sizes_t res = { {0} };
res.vertices.num = _sshape_sphere_num_vertices(slices, stacks);
res.indices.num = _sshape_sphere_num_indices(slices, stacks);
res.vertices.size = res.vertices.num * sizeof(sshape_vertex_t);
res.indices.size = res.indices.num * sizeof(uint16_t);
return res;
}
SOKOL_API_IMPL sshape_sizes_t sshape_cylinder_sizes(uint32_t slices, uint32_t stacks) {
SOKOL_ASSERT((slices >= 3) && (stacks >= 1));
sshape_sizes_t res = { {0} };
res.vertices.num = _sshape_cylinder_num_vertices(slices, stacks);
res.indices.num = _sshape_cylinder_num_indices(slices, stacks);
res.vertices.size = res.vertices.num * sizeof(sshape_vertex_t);
res.indices.size = res.indices.num * sizeof(uint16_t);
return res;
}
SOKOL_API_IMPL sshape_sizes_t sshape_torus_sizes(uint32_t sides, uint32_t rings) {
SOKOL_ASSERT((sides >= 3) && (rings >= 3));
sshape_sizes_t res = { {0} };
res.vertices.num = _sshape_torus_num_vertices(sides, rings);
res.indices.num = _sshape_torus_num_indices(sides, rings);
res.vertices.size = res.vertices.num * sizeof(sshape_vertex_t);
res.indices.size = res.indices.num * sizeof(uint16_t);
return res;
}
/*
Geometry layout for plane (4 tiles):
+--+--+--+--+
|\ |\ |\ |\ |
| \| \| \| \|
+--+--+--+--+ 25 vertices (tiles + 1) * (tiles + 1)
|\ |\ |\ |\ | 32 triangles (tiles + 1) * (tiles + 1) * 2
| \| \| \| \|
+--+--+--+--+
|\ |\ |\ |\ |
| \| \| \| \|
+--+--+--+--+
|\ |\ |\ |\ |
| \| \| \| \|
+--+--+--+--+
*/
SOKOL_API_IMPL sshape_buffer_t sshape_build_plane(const sshape_buffer_t* in_buf, const sshape_plane_t* in_params) {
SOKOL_ASSERT(in_buf && in_params);
const sshape_plane_t params = _sshape_plane_defaults(in_params);
const uint32_t num_vertices = _sshape_plane_num_vertices(params.tiles);
const uint32_t num_indices = _sshape_plane_num_indices(params.tiles);
sshape_buffer_t buf = *in_buf;
if (!_sshape_validate_buffer(&buf, num_vertices, num_indices)) {
buf.valid = false;
return buf;
}
buf.valid = true;
const uint16_t start_index = _sshape_base_index(&buf);
if (!params.merge) {
_sshape_advance_offset(&buf.vertices);
_sshape_advance_offset(&buf.indices);
}
// write vertices
uint32_t rand_seed = 0x12345678;
const float x0 = -params.width * 0.5f;
const float z0 = params.depth * 0.5f;
const float dx = params.width / params.tiles;
const float dz = -params.depth / params.tiles;
const float duv = 1.0f / params.tiles;
_sshape_vec4_t tnorm = _sshape_vec4_norm(_sshape_mat4_mul(¶ms.transform, _sshape_vec4(0.0f, 1.0f, 0.0f, 0.0f)));
for (uint32_t ix = 0; ix <= params.tiles; ix++) {
for (uint32_t iz = 0; iz <= params.tiles; iz++) {
const _sshape_vec4_t pos = _sshape_vec4(x0 + dx*ix, 0.0f, z0 + dz*iz, 1.0f);
const _sshape_vec4_t tpos = _sshape_mat4_mul(¶ms.transform, pos);
const _sshape_vec2_t uv = _sshape_vec2(duv*ix, duv*iz);
const uint32_t color = params.random_colors ? _sshape_rand_color(&rand_seed) : params.color;
_sshape_add_vertex(&buf, tpos, tnorm, uv, color);
}
}
// write indices
for (uint16_t j = 0; j < params.tiles; j++) {
for (uint16_t i = 0; i < params.tiles; i++) {
const uint16_t i0 = start_index + (j * (params.tiles + 1)) + i;
const uint16_t i1 = i0 + 1;
const uint16_t i2 = i0 + params.tiles + 1;
const uint16_t i3 = i2 + 1;
_sshape_add_triangle(&buf, i0, i1, i3);
_sshape_add_triangle(&buf, i0, i3, i2);
}
}
return buf;
}
SOKOL_API_IMPL sshape_buffer_t sshape_build_box(const sshape_buffer_t* in_buf, const sshape_box_t* in_params) {
SOKOL_ASSERT(in_buf && in_params);
const sshape_box_t params = _sshape_box_defaults(in_params);
const uint32_t num_vertices = _sshape_box_num_vertices(params.tiles);
const uint32_t num_indices = _sshape_box_num_indices(params.tiles);
sshape_buffer_t buf = *in_buf;
if (!_sshape_validate_buffer(&buf, num_vertices, num_indices)) {
buf.valid = false;
return buf;
}
buf.valid = true;
const uint16_t start_index = _sshape_base_index(&buf);
if (!params.merge) {
_sshape_advance_offset(&buf.vertices);
_sshape_advance_offset(&buf.indices);
}
// build vertices
uint32_t rand_seed = 0x12345678;
const float x0 = -params.width * 0.5f;
const float x1 = params.width * 0.5f;
const float y0 = -params.height * 0.5f;
const float y1 = params.height * 0.5f;
const float z0 = -params.depth * 0.5f;
const float z1 = params.depth * 0.5f;
const float dx = params.width / params.tiles;
const float dy = params.height / params.tiles;
const float dz = params.depth / params.tiles;
const float duv = 1.0f / params.tiles;
// bottom/top vertices
for (uint32_t top_bottom = 0; top_bottom < 2; top_bottom++) {
_sshape_vec4_t pos = _sshape_vec4(0.0f, (0==top_bottom) ? y0:y1, 0.0f, 1.0f);
const _sshape_vec4_t norm = _sshape_vec4(0.0f, (0==top_bottom) ? -1.0f:1.0f, 0.0f, 0.0f);
const _sshape_vec4_t tnorm = _sshape_vec4_norm(_sshape_mat4_mul(¶ms.transform, norm));