forked from CS-433/ml-project-2-scikit-learn2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorruptions.py
194 lines (143 loc) · 8.06 KB
/
corruptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import re
import random
def calculate_uncertainties_statistics(text, uncertainty_chars):
'''
Computes the probabilities of different types of uncertainties in the
given text.
Args:
text (str): original text
uncertainty_chars (dict): mapping of (type of uncertainty, char representation)
Returns:
dict: mapping of (type of uncertainty, probability)
'''
parenthesis = re.findall('\[.*?\]', text)
# replace all square brackets (alternate readings) with a one-char representation
text_wpar = re.sub('\[(^\])+?\]', uncertainty_chars['ALTERNATE_CHAR'], text)
single_unc = uncertainty_chars['SINGLE_UNCERTAINTY'].replace('?', '\?')
unc_seq = uncertainty_chars['UNCERTAIN_SEQUENCE'].replace('?', '\?')
qmarks = re.findall('[^'+single_unc+']('+single_unc+')[^'+single_unc+']', text_wpar)
qmarks2 = re.findall('[^'+single_unc+']('+single_unc+single_unc+')[^'+single_unc+']', text_wpar)
qmarks3 = re.findall(unc_seq, text_wpar)
maybe_spaces = re.findall(uncertainty_chars['UNCERTAIN_SPACE'], text_wpar)
# Count number of word characters and space-like characters
nchars = len(re.findall(f"[^ {uncertainty_chars['UNCERTAIN_SPACE']}\n]", text_wpar))
nspaces = len(re.findall(f"[ {uncertainty_chars['UNCERTAIN_SPACE']}]", text_wpar))
alternate_readings_ratio = len(parenthesis) / nchars
single_uncertainty_ratio = len(qmarks + qmarks2) / nchars
uncertain_sequences_ratio = len(qmarks3) / nchars
space_uncertainty_ratio = len(maybe_spaces) / nspaces
print(f'Number of alternate readings: {len(parenthesis)}, {alternate_readings_ratio*100:.3f}% of chars')
print(f'Number of single uncertainty: {len(qmarks+qmarks2)}, {single_uncertainty_ratio*100:.3f}% of chars')
print(f'Number of uncertain sequences: {len(qmarks3)}, {uncertain_sequences_ratio*100:.3f}% of chars')
print(f'Number of uncertain spaces: {len(maybe_spaces)}, {space_uncertainty_ratio*100:.3f}% of spaces')
uncertainty_ratios = {'ALTERNATE_READINGS_RATIO': alternate_readings_ratio,
'SINGLE_UNCERTAINTY_RATIO': single_uncertainty_ratio,
'UNCERTAIN_SEQUENCE_RATIO': uncertain_sequences_ratio,
'SPACE_UNCERTAINTY_RATIO': space_uncertainty_ratio
}
return uncertainty_ratios
def get_space_transform_probability(uncertainty_ratios, uncertainty_chars, actual_space_ratio, space_count, middle_char_count):
'''
Compute the probabilities of corrupting spaces and non-space chars to
uncertain spaces.
Args:
uncertainty_ratios (dict): mapping of (type of uncertainty, probability)
uncertainty_chars (dict): mapping of (type of uncertainty, char representation)
actual_space_ratio (float): ratio of actual spaces out of all the uncertain spaces.
space_count (int): number of spaces in the original text.
middle_char_count (int): number of characters in the original text, excluding spaces and chars at the beginning of a word.
Returns:
float: probability of a space being corrupted to an uncertain space.
float: probability of a non-space char being corrupted to an uncertain space.
'''
uncertain_space_count = uncertainty_ratios['SPACE_UNCERTAINTY_RATIO'] * space_count / \
(1 - uncertainty_ratios['SPACE_UNCERTAINTY_RATIO'])
uncertain_actual_space_count = uncertain_space_count * actual_space_ratio
uncertain_fake_space_count = uncertain_space_count * (1 - actual_space_ratio)
space_to_uncertain_space_proba = uncertain_actual_space_count / space_count
char_to_uncertain_space_proba = uncertain_fake_space_count / middle_char_count
return space_to_uncertain_space_proba, char_to_uncertain_space_proba
def transform_space(uncertainty_chars, space_to_uncertain_space_proba):
'''
Trasform a space to an uncertain space according to the specified probability.
Args:
uncertainty_chars (dict): mapping of (type of uncertainty, char representation)
space_to_uncertain_space_proba (float): probability of a space being corrupted to an uncertain space.
Returns:
str: resulting character (a space or an uncertain space)
'''
if(random.random() <= space_to_uncertain_space_proba):
return uncertainty_chars['UNCERTAIN_SPACE']
else:
return ' '
def transform_char(char, uncertainty_ratios, uncertainty_chars, alphabet, char_to_uncertain_space_proba):
'''
Trasform a non-space character according to uncertainty_ratios.
Args:
char (str): original character
uncertainty_ratios (dict): mapping of (type of uncertainty, probability)
uncertainty_chars (dict): mapping of (type of uncertainty, char representation)
alphabet (list): known non-space characters in the alphabet
char_to_uncertain_space_proba (float): probability of a non-space char being corrupted to an uncertain space.
Returns:
str: resulting character
'''
extraction = random.random()
# Probability already tested in previous if statements
tested_prob = 0
if extraction <= tested_prob + char_to_uncertain_space_proba:
return uncertainty_chars['UNCERTAIN_SPACE'] + char
tested_prob += char_to_uncertain_space_proba
if extraction <= tested_prob + uncertainty_ratios['ALTERNATE_READINGS_RATIO']:
# Generate a random letter and have it as an alternative toghether
# with the real letter.
alt_char = random.choice(alphabet)
seq = [char, alt_char]
random.shuffle(seq)
return f"[{':'.join(seq)}]"
tested_prob += uncertainty_ratios['ALTERNATE_READINGS_RATIO']
if extraction <= tested_prob + uncertainty_ratios['SINGLE_UNCERTAINTY_RATIO']:
return uncertainty_chars['SINGLE_UNCERTAINTY']
tested_prob += uncertainty_ratios['SINGLE_UNCERTAINTY_RATIO']
if extraction <= tested_prob + uncertainty_ratios['UNCERTAIN_SEQUENCE_RATIO']:
return uncertainty_chars['UNCERTAIN_SEQUENCE']
return char
def corrupt_text(text, uncertainty_ratios, uncertainty_chars, alphabet, actual_space_ratio):
'''
Corrupt the text according to the specified uncertainties probabilities and
representations, assuming uncertain spaces are actual spaces with probability
equal to actual_space_ratio.
Args:
text (str): original text
uncertainty_ratios (dict): mapping of (type of uncertainty, probability)
uncertainty_chars (dict): mapping of (type of uncertainty, char representation)
alphabet (list): known non-space characters in the alphabet
actual_space_ratio (float): ratio of actual spaces out of all the uncertain spaces.
Returns:
(str): corrupted text
'''
# space_count, char_count = count_space_chars(text, alphabet)
space_count = len(re.findall(' ', text))
middle_char_count = len(re.findall('(?<=[^ ])['+alphabet+']', text))
probas = get_space_transform_probability(uncertainty_ratios, uncertainty_chars,
actual_space_ratio, space_count, middle_char_count)
space_to_uncertain_space_proba = probas[0]
char_to_uncertain_space_proba = probas[1]
corrupted_text = '-'
for char in text:
if char == ' ':
corrupted_text += transform_space(uncertainty_chars, space_to_uncertain_space_proba)
elif char in alphabet:
# For characters at the beginning of a word, remove the probability
# of corruption to uncertain spaces.
if(corrupted_text[-1] in f' {uncertainty_chars["UNCERTAIN_SPACE"]}\n'):
corrupted_text += transform_char(char, uncertainty_ratios, uncertainty_chars,
alphabet, 0)
else:
corrupted_text += transform_char(char, uncertainty_ratios, uncertainty_chars,
alphabet, char_to_uncertain_space_proba)
else:
corrupted_text += char
corrupted_text = corrupted_text[1:]
calculate_uncertainties_statistics(corrupted_text, uncertainty_chars)
return corrupted_text