-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshift_average_trim_combine.m
308 lines (249 loc) · 11.8 KB
/
shift_average_trim_combine.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
%% phase average Individual Runs
% first shift, then phase average, then trim, last combine paressure
clc
clear all
close all
set(0,'DefaultFigureWindowStyle','normal');
startCase = 1;
totalCase = 32;
nRuns = 10;
data = cell(totalCase,1);
%% shift, use 1st run as reference to shift
for caseNumber = startCase:totalCase
% load data
caseNo = caseNumber; % choose case number
casename = ['case', num2str(caseNo,'%02i'), '_IdvRuns.mat'];
data{caseNumber} = load(casename);
% shift, use 1st run as reference to shift
F_Filtered_shift{caseNumber,1}(:,:) = data{caseNumber}.F_Filtered{1}(:,:);
F_sStar_shift{caseNumber,1} = data{caseNumber}.F_sStar{1};
P_1_8_Filtered_shift{caseNumber,1}(:,:) = data{caseNumber}.P_1_8_Filtered{1}(:,:);
P_1_8_sStar_shift{caseNumber,1} = data{caseNumber}.P_1_8_sStar{1};
P_9_16_Filtered_shift{caseNumber,1}(:,:) = data{caseNumber}.P_9_16_Filtered{1}(:,:);
P_9_16_sStar_shift{caseNumber,1} = data{caseNumber}.P_9_16_sStar{1};
for noRun =2:nRuns % different runs; use 1st run as reference to shift
% shift for force cl cd cm
for noCol = 1:3
[c,lags] = xcorr(data{caseNumber}.F_Filtered{1}(:,noCol),data{caseNumber}.F_Filtered{noRun}(:,noCol));
[c_max, c_max_index] = max(c);
shift(noCol) = lags(c_max_index);
F_Filtered_shift{caseNumber,noRun}(:,noCol) = circshift(data{caseNumber}.F_Filtered{noRun}(:,noCol),shift(noCol));
end
% shift for port 1-8
for noCol = 1:8
[c,lags] = xcorr(data{caseNumber}.P_1_8_Filtered{1}(:,noCol),data{caseNumber}.P_1_8_Filtered{noRun}(:,noCol));
[c_max, c_max_index] = max(c);
shift(noCol) = lags(c_max_index);
P_1_8_Filtered_shift{caseNumber,noRun}(:,noCol) = circshift(data{caseNumber}.P_1_8_Filtered{noRun}(:,noCol),shift(noCol));
end
% shift for port 9-16
for noCol = 1:8
[c,lags] = xcorr(data{caseNumber}.P_9_16_Filtered{1}(:,noCol),data{caseNumber}.P_9_16_Filtered{noRun}(:,noCol));
[c_max, c_max_index] = max(c);
shift(noCol) = lags(c_max_index);
P_9_16_Filtered_shift{caseNumber,noRun}(:,noCol) = circshift(data{caseNumber}.P_9_16_Filtered{noRun}(:,noCol),shift(noCol));
end
% shift for F_sStar
[c,lags] = xcorr(data{caseNumber}.F_sStar{1},data{caseNumber}.F_sStar{noRun});
[c_max, c_max_index] = max(c);
shift_f_sStar = lags(c_max_index);
F_sStar_shift{caseNumber,noRun} = circshift(data{caseNumber}.F_sStar{noRun},shift_f_sStar);
% shift for P_1_8_sStar
[c,lags] = xcorr(data{caseNumber}.P_1_8_sStar{1},data{caseNumber}.P_1_8_sStar{noRun});
[c_max, c_max_index] = max(c);
shift_P_1_8 = lags(c_max_index);
P_1_8_sStar_shift{caseNumber,noRun} = circshift(data{caseNumber}.P_1_8_sStar{noRun},shift_P_1_8);
% shift for P_9_16_sStar
[c,lags] = xcorr(data{caseNumber}.P_9_16_sStar{1},data{caseNumber}.P_9_16_sStar{noRun});
[c_max, c_max_index] = max(c);
shift_P_9_16 = lags(c_max_index);
P_9_16_sStar_shift{caseNumber,noRun} = circshift(data{caseNumber}.P_9_16_sStar{noRun},shift_P_9_16);
end
end
%% phase average
% phase average
for caseNumber = startCase:totalCase
for noRun = 1:nRuns
numrowsF(noRun) = size(F_Filtered_shift{caseNumber,noRun},1);
numrowsF_sStar(noRun) = size(F_sStar_shift{caseNumber,noRun},1);
numrowsP_1_8(noRun) = size(P_1_8_Filtered_shift{caseNumber,noRun},1);
numrowsP_1_8_sStar_shift(noRun) = size(P_1_8_sStar_shift{caseNumber,noRun},1);
numrowsP_9_16(noRun) = size(P_9_16_Filtered_shift{caseNumber,noRun},1);
numrowsP_9_16_sStar_shift(noRun) = size(P_9_16_sStar_shift{caseNumber,noRun},1);
end
F_Sum_Filter = zeros(min(numrowsF),3,nRuns);
F_sStarSum = zeros(min(numrowsF_sStar),nRuns);
P_1_8_Sum_Filter = zeros(min(numrowsP_1_8),8,nRuns);
P_1_8_sStarSum = zeros(min(numrowsP_1_8_sStar_shift),nRuns);
P_9_16_Sum_Filter = zeros(min(numrowsP_9_16),8,nRuns);
P_9_16_sStarSum = zeros(min(numrowsP_9_16_sStar_shift),nRuns);
for noRun = 1:nRuns
F_sStarSum(:,noRun) = F_sStar_shift{caseNumber,noRun}(1:min(numrowsF_sStar));
P_1_8_sStarSum(:,noRun) = P_1_8_sStar_shift{caseNumber,noRun}(1:min(numrowsP_1_8_sStar_shift));
P_9_16_sStarSum(:,noRun) = P_9_16_sStar_shift{caseNumber,noRun}(1:min(numrowsP_9_16_sStar_shift));
for j =1:3
F_Sum_Filter(:,j,noRun) = F_Filtered_shift{caseNumber,noRun}(1:min(numrowsF),j);
end
for jjj = 1:8
P_1_8_Sum_Filter(:,jjj,noRun) = P_1_8_Filtered_shift{caseNumber,noRun}(1:min(numrowsP_1_8),jjj);
P_9_16_Sum_Filter(:,jjj,noRun) = P_9_16_Filtered_shift{caseNumber,noRun}(1:min(numrowsP_9_16),jjj);
end
end
F_Filtered_PhaseAve{caseNumber} = mean(F_Sum_Filter,3);
P_1_8_Filtered_PhaseAve{caseNumber} = mean(P_1_8_Sum_Filter,3);
P_9_16_Filtered_PhaseAve{caseNumber} = mean(P_9_16_Sum_Filter,3);
F_sS_PhaseAve{caseNumber} = mean(F_sStarSum,2);
P_1_8_sS_PhaseAve{caseNumber} = mean(P_1_8_sStarSum,2);
P_9_16_sS_PhaseAve{caseNumber} = mean(P_9_16_sStarSum,2);
end
%% %%% check shift & phase average
for caseNumber = 1:totalCase
f1 = figure;
f1.Position = [100 100 1800 800];
% check f shift
subplot(3,1,1)
plot(F_Filtered_PhaseAve{caseNumber},'LineWidth',2, 'Color','r')
hold on
for i = 1:nRuns
plot(F_Filtered_shift{caseNumber,i},'LineStyle','--')
hold on
end
title('f shift')
xlim([0 12000])
% check P_1_8 shift
subplot(3,1,2)
plot(P_1_8_Filtered_PhaseAve{caseNumber},'LineWidth',2, 'Color','r')
hold on
for i = 1:nRuns
plot(P_1_8_Filtered_shift{caseNumber,i},'LineStyle','--')
hold on
end
title('p (1-8) shift')
xlim([0 12000])
% check P_9_16 shift
subplot(3,1,3)
plot(P_9_16_Filtered_PhaseAve{caseNumber},'LineWidth',2, 'Color','r')
hold on
for i = 1:nRuns
plot(P_9_16_Filtered_shift{caseNumber,i},'LineStyle','--')
hold on
end
title('p (9 16) shift')
xlim([0 12000])
sgtitle(['case', num2str(caseNumber,'%02i')])
% save figure
% saveas(gcf,['case', num2str(caseNumber,'%02i') '.png'])
% close(f1)
end
%% trim, using trim mtrix from .csv. Here choose 3000 points to trim, s*=10
lenTrim = 2000;
lenTrim_before = 500-1; % in order to get 50*50=2500 samples
trimAmendMatrix = [0 0 0 2000 2000 2000 0 2000 1000 0 50 0 50 0 0 0 0 0 -110 0 0 -190 -50 -160 -170 -150 -200 -130 -140 -130 -180 -220];
for caseNumber = startCase:totalCase
% load the trim matrix from .txt
casename = ['case', num2str(caseNumber,'%02i')];
whichCase = fopen('trim_index_matrix_by_force.txt');
caseUsed = textscan(whichCase, '%s %s','delimiter','|', 'HeaderLines',1);
fclose(whichCase);
clear whichCase
caseIndex = find(string(strtrim(cell2mat(caseUsed{1}))) == string(casename));
trimParameter = cell2mat(textscan(cell2mat(caseUsed{2}(caseIndex)),'%f %f %f %f %f %f %f'));
% trim f
F_trim{caseNumber} = F_Filtered_PhaseAve{caseNumber}(trimParameter(1)-lenTrim_before:trimParameter(1)+lenTrim,:);
F_sStar_trim{caseNumber} = F_sS_PhaseAve{caseNumber}(trimParameter(1)-lenTrim_before:trimParameter(1)+lenTrim);
% normalize S using chord length 0.3m
F_sStar_trim{caseNumber} = (F_sStar_trim{caseNumber} - F_sStar_trim{caseNumber}(1)) / 0.3;
%trim P_1_8
P_1_8_trim{caseNumber} = P_1_8_Filtered_PhaseAve{caseNumber}(trimParameter(3)-lenTrim_before:trimParameter(3)+lenTrim,:);
P_1_8_sStar_trim{caseNumber} = P_1_8_sS_PhaseAve{caseNumber}(trimParameter(3)-lenTrim_before+trimAmendMatrix(caseNumber):trimParameter(3)+lenTrim+trimAmendMatrix(caseNumber));
% normalize S using chord length 0.3m
P_1_8_sStar_trim{caseNumber} = (P_1_8_sStar_trim{caseNumber} - P_1_8_sStar_trim{caseNumber}(1)) / 0.3;
%trim P_9_16
P_9_16_trim{caseNumber} = P_9_16_Filtered_PhaseAve{caseNumber}(trimParameter(5)-lenTrim_before:trimParameter(5)+lenTrim,:);
P_9_16_sStar_trim{caseNumber} = P_9_16_sS_PhaseAve{caseNumber}(trimParameter(5)-lenTrim_before:trimParameter(5)+lenTrim);
% normalize S using chord length 0.3m
P_9_16_sStar_trim{caseNumber} = (P_9_16_sStar_trim{caseNumber} - P_9_16_sStar_trim{caseNumber}(1)) / 0.3;
end
%% combine pressure
for caseNumber = startCase:totalCase
P_trim{caseNumber} = [P_1_8_trim{caseNumber} P_9_16_trim{caseNumber}];
P_sStar_trim{caseNumber} = P_1_8_sStar_trim{caseNumber};
P_trim_temp = P_trim{caseNumber}(:,11);
P_trim{caseNumber}(:,11:15) = P_trim{caseNumber}(:,12:16);
P_trim{caseNumber}(:,16) = P_trim_temp;
end
% check trim data
for caseNumber = startCase:totalCase
% plot(P_sStar_trim{caseNumber},P_trim{caseNumber})
plot(P_trim{caseNumber})
hold on
end
%% %%%%%%%%%%%%%%%%%%%%%%%%% prepare for ML %%%%%%%%%%%%%%%%%%%%%%%%%
% combine the trained and test cases by column
pwd
currentFolder = pwd;
% delete dataset.h5 file before recreate a new one
testSize = 0.2;
allCase = totalCase;
allTrain = round(totalCase * (1-testSize));
dataTrain_F = F_trim{2};
dataTrain_F_s = F_sStar_trim{2};
dataTrain_P = P_trim{2};
dataTrain_P_s = P_sStar_trim{2};
dataTest_F = F_trim{1};
dataTest_F_s = F_sStar_trim{1};
dataTest_P = P_trim{1};
dataTest_P_s = P_sStar_trim{1};
%commbine train data set
for i = [3 4 5 6 7 8 11 12 13 14 15 16 17 18 19 22 23 24 25 26 27 28 29 30 31]
dataTrain_F = [dataTrain_F;F_trim{i}];
dataTrain_F_s = [dataTrain_F_s;F_sStar_trim{i}];
dataTrain_P = [dataTrain_P;P_trim{i}];
dataTrain_P_s = [dataTrain_P_s;P_sStar_trim{i}];
end
%commbine test data set
for i = [9 10 20 21 32 ]
dataTest_F = [dataTest_F;F_trim{i}];
dataTest_F_s = [dataTest_F_s;F_sStar_trim{i}];
dataTest_P = [dataTest_P;P_trim{i}];
dataTest_P_s = [dataTest_P_s;P_sStar_trim{i}];
end
% save data to .h5 for python
rootDir = 'D:\work\myExperiment\model\deltaWing\data_exp\dataOrginazed';
cd([rootDir '\postProcess\dataForML'])
savepath = [rootDir '\' 'postProcess' '\' 'dataForML ' '\' 'dataset_2tests_' num2str(lenTrim+lenTrim_before+1) '.h5'];
% save trained cases F
h5create(savepath, '/F/train', size(dataTrain_F));
h5write(savepath, '/F/train', dataTrain_F)
% save trained cases s
h5create(savepath, '/F_s/train', size(dataTrain_F_s));
h5write(savepath, '/F_s/train', dataTrain_F_s)
% save test cases F
h5create(savepath, '/F/test', size(dataTest_F));
h5write(savepath, '/F/test', dataTest_F)
% save test cases s
h5create(savepath, '/F_s/test', size(dataTest_F_s));
h5write(savepath, '/F_s/test', dataTest_F_s)
% save trained cases P
h5create(savepath, '/P/train', size(dataTrain_P));
h5write(savepath, '/P/train', dataTrain_P)
% save trained cases s
h5create(savepath, '/P_s/train', size(dataTrain_P_s));
h5write(savepath, '/P_s/train', dataTrain_P_s)
% save test cases P
h5create(savepath, '/P/test', size(dataTest_P));
h5write(savepath, '/P/test', dataTest_P)
% save test cases s
h5create(savepath, '/P_s/test', size(dataTest_P_s));
h5write(savepath, '/P_s/test', dataTest_P_s)
cd(currentFolder);
pwd
% %% for spectrum analysis
% fs = 1000;
% t = (0.001:1/fs:12.625)';
% F_NoFiltered = data{1,1}.F_NoFiltered{1}(:,1);
% S = timetable(seconds(t),F_NoFiltered);
% Train_error = 0.0010416443836090022;
% Test_error = 0.0010633341572968019;
% b = bar([Train_error Test_error],'FaceColor','flat');
% b.CData(2,:) = [0 0.8 0.8];