-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_approx_ver2_memory.cpp
258 lines (221 loc) · 9.06 KB
/
main_approx_ver2_memory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include <iostream>
#include <fstream>
#include <ctime>
#include <vector>
#include <queue>
#include <algorithm>
#include <random>
#include <unordered_map>
#include <unordered_set>
#include "read_data.cpp"
#include "motif_id.cpp"
using namespace std;
struct hyperwedge{
int a, b, C_ab;
};
inline long long convert_id(int hyperedge_a, int hyperedge_b){
return hyperedge_a * (1LL << 31) + hyperedge_b;
}
long long edge_size_limit, edge_capacity_left;
vector<long long> upd_time_proj;
priority_queue< pair<int, int>, vector< pair<int, int> >, greater< pair<int, int> > > pq;
void get_adj(int hyperedge_a, int deg_a, vector< vector< pair<int, int> > >& hyperedge_adj, vector< unordered_map<int, int> >& hyperedge_inter, vector< vector<int> >& node2hyperedge, vector< vector<int> >& hyperedge2node){
int deg_a_curr = 0;
hyperedge_adj[hyperedge_a].resize(deg_a);
for (const int &node: hyperedge2node[hyperedge_a]){
for (const int &hyperedge_b: node2hyperedge[node]){
if (hyperedge_b == hyperedge_a) continue;
if ((upd_time_proj[hyperedge_b] >> 31) ^ hyperedge_a){
upd_time_proj[hyperedge_b] = ((long long)hyperedge_a << 31) + deg_a_curr;
hyperedge_adj[hyperedge_a][deg_a_curr++] = {hyperedge_b, 0};
}else if((int)(upd_time_proj[hyperedge_b] & 0x7FFFFFFFLL) == deg_a_curr){
upd_time_proj[hyperedge_b] = ((long long)hyperedge_a << 31) + deg_a_curr;
hyperedge_adj[hyperedge_a][deg_a_curr++] = {hyperedge_b, 0};
}
hyperedge_adj[hyperedge_a][(int)(upd_time_proj[hyperedge_b] & 0x7FFFFFFFLL)].second++;
}
}
hyperedge_inter[hyperedge_a].rehash(deg_a);
for (int i = 0; i < deg_a; i++){
int hyperedge_b = hyperedge_adj[hyperedge_a][i].first, C_ab = hyperedge_adj[hyperedge_a][i].second;
hyperedge_inter[hyperedge_a].insert({hyperedge_b, C_ab});
}
pq.push({deg_a, hyperedge_a});
}
int main(int argc, char *argv[])
{
clock_t start;
clock_t run_start;
int progress;
long long sampling_size = stoi(argv[1]);
long double mem_p = stod(argv[2]);
string graphFile = "dblp_graph.txt";
cout << "Sampling size: " << sampling_size << endl << endl;
// Read data
start = clock();
vector< vector<int> > node2hyperedge;
vector< vector<int> > hyperedge2node;
vector< unordered_set<int> > hyperedge2node_set;
read_data(graphFile, node2hyperedge, hyperedge2node, hyperedge2node_set);
int V = node2hyperedge.size(), E = hyperedge2node.size();
cout << "# of nodes: " << V << '\n';
cout << "# of hyperedges: " << E << '\n';
cout << "Reading data done: "
<< (double)(clock() - start) / CLOCKS_PER_SEC << " sec" << endl;
cout << "------------------------------------------" << endl << endl;
// h_motif counting via hyperwedge smapling
start = clock(); run_start = clock();
vector<bool> searched(E, false);
vector<long long> h_motif(30, 0);
vector<int> intersection(V, 0);
vector< vector< pair<int, int> > > hyperedge_adj;
vector< unordered_map<int, int> > hyperedge_inter;
hyperedge_adj.resize(E);
hyperedge_inter.resize(E);
vector<int> upd_time(E, -1);
upd_time_proj.resize(E);
std::fill(upd_time_proj.begin(), upd_time_proj.end(), -1LL);
vector<long long> degs_sum(E + 1, 0);
for(int hyperedge_a = 0; hyperedge_a < E; hyperedge_a++){
degs_sum[hyperedge_a + 1] = degs_sum[hyperedge_a];
long long l_hyperedge_a = (long long)hyperedge_a;
upd_time[hyperedge_a] = hyperedge_a;
for (const int &node: hyperedge2node[hyperedge_a]){
for (const int &hyperedge_b: node2hyperedge[node]){
if (upd_time[hyperedge_b] ^ hyperedge_a){
upd_time[hyperedge_b] = hyperedge_a;
degs_sum[hyperedge_a + 1]++;
}
}
}
}
edge_size_limit = (long long)((long double)degs_sum[E] * mem_p); edge_capacity_left = edge_size_limit;
cout << edge_size_limit << endl;
mt19937 gen(2020);
uniform_real_distribution<> urd(0.0, 1.0);
uniform_int_distribution<long long> dist(0, degs_sum[E] - 1);
//sampling_size = degs_sum[E];
long long max_batch_size = sampling_size;
vector<long long> sampled_idx(sampling_size, 0);
vector< vector<long long> > intermediate_buckets;
vector< vector<long long> > final_buckets;
intermediate_buckets.resize(E);
final_buckets.resize((degs_sum[E] + E - 1) / E);
for(long long batch_start_idx = 0; batch_start_idx < sampling_size; batch_start_idx += max_batch_size){
std::fill(upd_time.begin(), upd_time.end(), -1LL);
long long batch_size = min(max_batch_size, sampling_size - batch_start_idx);
for (long long sample = 0; sample < batch_size; sample++){
//sampled_idx[sample] = sample + batch_start_idx; //dist(gen);
sampled_idx[sample] = dist(gen);
intermediate_buckets[sampled_idx[sample] % E].push_back(sampled_idx[sample]);
}
for (int i = 0; i < E; i++){
for(const long long &idx: intermediate_buckets[i]){
final_buckets[idx / E].push_back(idx);
}
intermediate_buckets[i].clear();
}
int sampled_idx_pointer = 0;
for(int i = 0; i < (int)final_buckets.size(); i++){
for(const long long &idx: final_buckets[i]){
sampled_idx[sampled_idx_pointer++] = idx;
}
final_buckets[i].clear();
}
unordered_map<int, int> sample_cnt;
int hyperedge_a = -1;
for (int sample = 0; sample < batch_size; sample++){
if (sample % 10000 == 0)
cout << "Sampling: " << sample << " / " << sampling_size << endl;
while(sampled_idx[sample] >= degs_sum[hyperedge_a + 1]){ hyperedge_a++; }
int deg_a = (int)(degs_sum[hyperedge_a + 1] - degs_sum[hyperedge_a]), size_a = (int)hyperedge2node[hyperedge_a].size();
if(hyperedge_adj[hyperedge_a].size() ^ deg_a){
while(edge_capacity_left < deg_a){
pair<int, int> target = pq.top(); pq.pop();
edge_capacity_left += target.first;
hyperedge_adj[target.second].clear();
hyperedge_inter[target.second].clear();
}
get_adj(hyperedge_a, deg_a, hyperedge_adj, hyperedge_inter, node2hyperedge, hyperedge2node);
edge_capacity_left -= deg_a;
}
int hyperedge_b_idx = sampled_idx[sample] - degs_sum[hyperedge_a];
int hyperedge_b = hyperedge_adj[hyperedge_a][hyperedge_b_idx].first, C_ab = hyperedge_adj[hyperedge_a][hyperedge_b_idx].second;
int deg_b = (int)(degs_sum[hyperedge_b + 1] - degs_sum[hyperedge_b]), size_b = (int)hyperedge2node[hyperedge_b].size();
upd_time[hyperedge_a] = upd_time[hyperedge_b] = sample;
if(hyperedge_adj[hyperedge_b].size() ^ deg_b){
bool a_eliminated = false;
while(edge_capacity_left < deg_b){
pair<int, int> target = pq.top(); pq.pop();
if(target.second ^ hyperedge_a){
edge_capacity_left += target.first;
hyperedge_adj[target.second].clear();
hyperedge_inter[target.second].clear();
}else{
a_eliminated = true;
}
}
if(a_eliminated){
pq.push({deg_a, hyperedge_a});
}
get_adj(hyperedge_b, deg_b, hyperedge_adj, hyperedge_inter, node2hyperedge, hyperedge2node);
edge_capacity_left -= deg_b;
}
int min_ab = hyperedge_a, max_ab = hyperedge_b;
if (size_a > size_b) min_ab = hyperedge_b, max_ab = hyperedge_a;
const auto &nodes = hyperedge2node_set[max_ab]; auto it_end = nodes.end(); int cnt = 0;
for (const int &node: hyperedge2node[min_ab]){ if(nodes.find(node) != it_end) intersection[cnt++] = node;}
for (int i = 0; i < deg_b; i++){
int hyperedge_c = hyperedge_adj[hyperedge_b][i].first, C_bc = hyperedge_adj[hyperedge_b][i].second;
if (upd_time[hyperedge_c] ^ sample){
upd_time[hyperedge_c] = sample;
int size_c = (int)hyperedge2node[hyperedge_c].size();
int C_ca = 0, g_abc = 0;
C_ca = hyperedge_inter[hyperedge_a][hyperedge_c];
const auto &nodes = hyperedge2node_set[hyperedge_c]; auto it_end = nodes.end();
for (int k = 0; k < C_ab; k++){ if(nodes.find(intersection[k]) != it_end) g_abc++; }
int motif_index = get_motif_index_new(size_a, size_b, size_c, C_ab, C_bc, C_ca, g_abc);
h_motif[motif_index]++;
}
}
for (int i = 0; i < deg_a; i++){
int hyperedge_c = hyperedge_adj[hyperedge_a][i].first, C_ca = hyperedge_adj[hyperedge_a][i].second;
if (upd_time[hyperedge_c] ^ sample){
upd_time[hyperedge_c] = sample;
int size_c = (int)hyperedge2node[hyperedge_c].size();
int C_bc = 0, g_abc = 0;
int motif_index = get_motif_index_new(size_a, size_b, size_c, C_ab, C_bc, C_ca, g_abc);
h_motif[motif_index]++;
}
}
}
}
int index = 0;
vector<long double> h_motif_final(30, 0);
for (int i = 0; i < 30; i++){
h_motif_final[i] = (long double)h_motif[i];
h_motif_final[i] *= (long double)degs_sum[E] / sampling_size;
if (20 <= i && i <= 25)
h_motif_final[i] /= 4.0;
else
h_motif_final[i] /= 6.0;
if (i == 0 || i == 1 || i == 4 || i == 6) continue;
cout << "h_motif " << ++index << ": " << h_motif_final[i] << endl;
}
double runtime = (double)(clock() - run_start) / CLOCKS_PER_SEC;
cout << "\nHypergraph motif counting done: "
<< (double)(clock() - start) / CLOCKS_PER_SEC << " sec" << endl;
cout << "Total runtime: " << runtime << endl;
cout << "-----------------------------------------" << endl << endl;
node2hyperedge.clear();
hyperedge2node.clear();
hyperedge2node_set.clear();
hyperedge_adj.clear();
hyperedge_inter.clear();
intersection.clear();
upd_time.clear();
sampled_idx.clear();
intermediate_buckets.clear();
final_buckets.clear();
return 0;
}