Mateverse APIs Clients(Python, NodeJS)
https://www.mateverse.com/ http://www.matelabs.in
The Mateverse APIs call will return you the 'confidence score'/'accuracy score' of your 'image files'/text/'text files'/'csv values' that are trained on a particular model of your choice. When you make a prediction through the API, you pass in the 'image file'/url or 'text file'/text or 'csv values' and tell it which model to use, authenticating the API call with your api_secret key and model_id
In request.py you need to pass in the following parameters to make the API work:
The api_secret key serves as the authentication key to the API call. Just copy-paste your api_secret key in request.py and you are good to go.
The model_id is to tell the API which model to use for your prediction.
You need to give the path to the images/text files which will go inside a list. You can pass in the path to as much images/text files as you want.
Examples:
If using an images model
['images/image1.jpg', 'images/image2.jpg']
If using a text model
['text/text1.txt', 'text/text2.txt']
Provide an url of a publicly accessible image. This is an optional parameter.
Example:
https://c1.staticflickr.com/1/155/354864230_a8fe1fe864.jpg
Provide a text sample which you want to use for the prediction. This is an optional parameter.
Example:
"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque finibus neque tortor, non lobortis nibh tempor id"
Provide a valid json string containing all column names and column values.
Example:
"[{\"column_value\": ***, \"column_name\": \"******\"}, {\"column_value\": ***, \"column_name\": \"******\"}, {\"column_value\": ***, \"column_name\": \"******\"}, {\"column_value\": ***, \"column_name\": \"******\"}]"
Take predictions from an images model:
python request_images.py
Take predictions from a text model:
python request_text.py
Take predictions from a csv model:
python request_csv.py
Response will be a JSON object, easily parsable in all programming languages.
Response from an images model:
{
"status":"success",
"message":"Predictions",
"predictions":[
{
"sample":"image.jpeg",
"predictions":[
{
"predicted_score":"0.962045",
"predicted_label":"predicted label 1"
},
{
"predicted_score":"0.037955",
"predicted_label":"predicted label 2"
}
]
},
{
"sample":"https://www.example.com/image.jpg",
"predictions":[
{
"predicted_score":"0.932396",
"predicted_label":"predicted label 1"
},
{
"predicted_score":"0.067604",
"predicted_label":"pfredicted label 2"
}
]
}
]
}
Response from a text model:
[
{
"status": "success",
"message": "Predictions.",
"predictions": [
{
"sample": "Lorem ipsum dolor sit amet, consectetur adipiscing elit.",
"label": "predicted label(class) or predicted number(integer/float)"
}
]
}
]
Response from a csv model:
{
"status":"success",
"message":[],
"predictions":[
{
"sample":"[{\"column_value\": ***, \"column_name\": \"******\"}, {\"column_value\": ***, \"column_name\": \"******\"}, {\"column_value\": ***, \"column_name\": \"******\"}, {\"column_value\": ***, \"column_name\": \"******\"}]",
"label":"predicted label(class) or predicted number(integer/float)"
}
]
}
MIT License