-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCifarI64bits.log
300 lines (300 loc) · 16.4 KB
/
CifarI64bits.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
2022-03-07 23:12:00,759 config: Namespace(K=256, M=8, T=0.4, alpha=10, batch_size=128, checkpoint_root='./checkpoints/CifarI64bits', dataset='CIFAR10', device='cuda:2', download_cifar10=False, epoch_num=50, eval_interval=1, feat_dim=128, final_lr=1e-05, hp_beta=0.001, hp_gamma=0.5, hp_lambda=0.05, is_asym_dist=True, lr=0.01, lr_scaling=0.001, mode='debias', momentum=0.9, monitor_counter=10, notes='CifarI64bits', num_workers=10, optimizer='SGD', pos_prior=0.1, protocal='I', queue_begin_epoch=3, seed=2021, start_lr=1e-05, topK=1000, trainable_layer_num=2, use_scheduler=True, use_writer=True, vgg_model_path=None, warmup_epoch_num=1).
2022-03-07 23:12:00,760 prepare CIFAR10 datatset.
2022-03-07 23:12:05,271 setup model.
2022-03-07 23:12:17,241 define loss function.
2022-03-07 23:12:17,242 setup SGD optimizer.
2022-03-07 23:12:17,243 prepare monitor and evaluator.
2022-03-07 23:12:17,247 begin to train model.
2022-03-07 23:12:17,249 register queue.
2022-03-07 23:24:19,302 epoch 0: avg loss=3.899930, avg quantization error=0.016006.
2022-03-07 23:24:19,302 begin to evaluate model.
2022-03-07 23:26:51,042 compute mAP.
2022-03-07 23:27:26,373 val mAP=0.524423.
2022-03-07 23:27:26,374 save the best model, db_codes and db_targets.
2022-03-07 23:27:28,429 finish saving.
2022-03-07 23:39:59,472 epoch 1: avg loss=3.146208, avg quantization error=0.013305.
2022-03-07 23:39:59,472 begin to evaluate model.
2022-03-07 23:42:26,260 compute mAP.
2022-03-07 23:43:00,183 val mAP=0.543297.
2022-03-07 23:43:00,184 save the best model, db_codes and db_targets.
2022-03-07 23:43:02,491 finish saving.
2022-03-07 23:56:05,727 epoch 2: avg loss=2.967800, avg quantization error=0.013178.
2022-03-07 23:56:05,728 begin to evaluate model.
2022-03-07 23:58:37,001 compute mAP.
2022-03-07 23:59:14,522 val mAP=0.570595.
2022-03-07 23:59:14,522 save the best model, db_codes and db_targets.
2022-03-07 23:59:18,364 finish saving.
2022-03-08 00:11:59,027 epoch 3: avg loss=5.249783, avg quantization error=0.016352.
2022-03-08 00:11:59,027 begin to evaluate model.
2022-03-08 00:14:11,171 compute mAP.
2022-03-08 00:14:39,941 val mAP=0.642344.
2022-03-08 00:14:39,942 save the best model, db_codes and db_targets.
2022-03-08 00:14:41,041 finish saving.
2022-03-08 00:24:22,650 epoch 4: avg loss=5.129624, avg quantization error=0.016246.
2022-03-08 00:24:22,651 begin to evaluate model.
2022-03-08 00:26:39,727 compute mAP.
2022-03-08 00:27:09,143 val mAP=0.653273.
2022-03-08 00:27:09,143 save the best model, db_codes and db_targets.
2022-03-08 00:27:10,429 finish saving.
2022-03-08 00:37:42,893 epoch 5: avg loss=5.097173, avg quantization error=0.016040.
2022-03-08 00:37:42,893 begin to evaluate model.
2022-03-08 00:40:15,722 compute mAP.
2022-03-08 00:40:50,309 val mAP=0.661210.
2022-03-08 00:40:50,310 save the best model, db_codes and db_targets.
2022-03-08 00:40:53,323 finish saving.
2022-03-08 00:53:31,397 epoch 6: avg loss=5.072324, avg quantization error=0.015841.
2022-03-08 00:53:31,398 begin to evaluate model.
2022-03-08 00:55:58,617 compute mAP.
2022-03-08 00:56:34,066 val mAP=0.661760.
2022-03-08 00:56:34,066 save the best model, db_codes and db_targets.
2022-03-08 00:56:38,072 finish saving.
2022-03-08 01:09:25,061 epoch 7: avg loss=5.052966, avg quantization error=0.015698.
2022-03-08 01:09:25,061 begin to evaluate model.
2022-03-08 01:11:52,123 compute mAP.
2022-03-08 01:12:27,788 val mAP=0.667933.
2022-03-08 01:12:27,788 save the best model, db_codes and db_targets.
2022-03-08 01:12:31,119 finish saving.
2022-03-08 01:25:19,918 epoch 8: avg loss=5.033845, avg quantization error=0.015627.
2022-03-08 01:25:19,918 begin to evaluate model.
2022-03-08 01:27:47,033 compute mAP.
2022-03-08 01:28:26,738 val mAP=0.665935.
2022-03-08 01:28:26,741 the monitor loses its patience to 9!.
2022-03-08 01:41:34,880 epoch 9: avg loss=5.016067, avg quantization error=0.015528.
2022-03-08 01:41:34,881 begin to evaluate model.
2022-03-08 01:44:00,495 compute mAP.
2022-03-08 01:44:40,042 val mAP=0.667241.
2022-03-08 01:44:40,043 the monitor loses its patience to 8!.
2022-03-08 01:57:45,293 epoch 10: avg loss=5.001167, avg quantization error=0.015479.
2022-03-08 01:57:45,293 begin to evaluate model.
2022-03-08 02:00:10,841 compute mAP.
2022-03-08 02:00:49,209 val mAP=0.668255.
2022-03-08 02:00:49,211 save the best model, db_codes and db_targets.
2022-03-08 02:00:51,944 finish saving.
2022-03-08 02:14:06,005 epoch 11: avg loss=4.987088, avg quantization error=0.015449.
2022-03-08 02:14:06,005 begin to evaluate model.
2022-03-08 02:16:29,434 compute mAP.
2022-03-08 02:17:06,661 val mAP=0.672405.
2022-03-08 02:17:06,662 save the best model, db_codes and db_targets.
2022-03-08 02:17:09,667 finish saving.
2022-03-08 02:29:33,028 epoch 12: avg loss=4.977957, avg quantization error=0.015400.
2022-03-08 02:29:33,028 begin to evaluate model.
2022-03-08 02:31:53,899 compute mAP.
2022-03-08 02:32:30,522 val mAP=0.670600.
2022-03-08 02:32:30,523 the monitor loses its patience to 9!.
2022-03-08 02:46:01,828 epoch 13: avg loss=4.962744, avg quantization error=0.015372.
2022-03-08 02:46:01,828 begin to evaluate model.
2022-03-08 02:48:21,684 compute mAP.
2022-03-08 02:49:03,017 val mAP=0.675778.
2022-03-08 02:49:03,017 save the best model, db_codes and db_targets.
2022-03-08 02:49:05,933 finish saving.
2022-03-08 03:02:46,195 epoch 14: avg loss=4.956213, avg quantization error=0.015339.
2022-03-08 03:02:46,195 begin to evaluate model.
2022-03-08 03:05:06,616 compute mAP.
2022-03-08 03:05:45,115 val mAP=0.673617.
2022-03-08 03:05:45,116 the monitor loses its patience to 9!.
2022-03-08 03:18:51,525 epoch 15: avg loss=4.944395, avg quantization error=0.015313.
2022-03-08 03:18:51,526 begin to evaluate model.
2022-03-08 03:21:09,688 compute mAP.
2022-03-08 03:21:51,792 val mAP=0.676249.
2022-03-08 03:21:51,794 save the best model, db_codes and db_targets.
2022-03-08 03:21:55,915 finish saving.
2022-03-08 03:35:52,226 epoch 16: avg loss=4.930397, avg quantization error=0.015345.
2022-03-08 03:35:52,226 begin to evaluate model.
2022-03-08 03:38:10,783 compute mAP.
2022-03-08 03:38:53,542 val mAP=0.676305.
2022-03-08 03:38:53,542 save the best model, db_codes and db_targets.
2022-03-08 03:38:57,065 finish saving.
2022-03-08 03:52:10,589 epoch 17: avg loss=4.921059, avg quantization error=0.015305.
2022-03-08 03:52:10,589 begin to evaluate model.
2022-03-08 03:54:29,154 compute mAP.
2022-03-08 03:55:08,891 val mAP=0.679615.
2022-03-08 03:55:08,892 save the best model, db_codes and db_targets.
2022-03-08 03:55:11,165 finish saving.
2022-03-08 04:09:04,575 epoch 18: avg loss=4.914371, avg quantization error=0.015264.
2022-03-08 04:09:04,576 begin to evaluate model.
2022-03-08 04:11:23,247 compute mAP.
2022-03-08 04:12:00,278 val mAP=0.680938.
2022-03-08 04:12:00,280 save the best model, db_codes and db_targets.
2022-03-08 04:12:02,476 finish saving.
2022-03-08 04:25:48,737 epoch 19: avg loss=4.909062, avg quantization error=0.015266.
2022-03-08 04:25:48,737 begin to evaluate model.
2022-03-08 04:28:03,089 compute mAP.
2022-03-08 04:28:45,588 val mAP=0.684207.
2022-03-08 04:28:45,589 save the best model, db_codes and db_targets.
2022-03-08 04:28:50,370 finish saving.
2022-03-08 04:42:45,039 epoch 20: avg loss=4.900568, avg quantization error=0.015245.
2022-03-08 04:42:45,039 begin to evaluate model.
2022-03-08 04:45:01,710 compute mAP.
2022-03-08 04:45:44,057 val mAP=0.682368.
2022-03-08 04:45:44,058 the monitor loses its patience to 9!.
2022-03-08 04:58:51,552 epoch 21: avg loss=4.894675, avg quantization error=0.015223.
2022-03-08 04:58:51,552 begin to evaluate model.
2022-03-08 05:01:09,862 compute mAP.
2022-03-08 05:01:49,513 val mAP=0.685222.
2022-03-08 05:01:49,514 save the best model, db_codes and db_targets.
2022-03-08 05:01:54,179 finish saving.
2022-03-08 05:15:28,768 epoch 22: avg loss=4.886534, avg quantization error=0.015228.
2022-03-08 05:15:28,768 begin to evaluate model.
2022-03-08 05:17:46,467 compute mAP.
2022-03-08 05:18:25,868 val mAP=0.686609.
2022-03-08 05:18:25,869 save the best model, db_codes and db_targets.
2022-03-08 05:18:28,763 finish saving.
2022-03-08 05:31:52,471 epoch 23: avg loss=4.878244, avg quantization error=0.015252.
2022-03-08 05:31:52,471 begin to evaluate model.
2022-03-08 05:34:07,941 compute mAP.
2022-03-08 05:34:48,523 val mAP=0.688436.
2022-03-08 05:34:48,524 save the best model, db_codes and db_targets.
2022-03-08 05:34:50,032 finish saving.
2022-03-08 05:48:25,711 epoch 24: avg loss=4.873710, avg quantization error=0.015223.
2022-03-08 05:48:25,711 begin to evaluate model.
2022-03-08 05:50:44,888 compute mAP.
2022-03-08 05:51:26,293 val mAP=0.689637.
2022-03-08 05:51:26,294 save the best model, db_codes and db_targets.
2022-03-08 05:51:31,534 finish saving.
2022-03-08 06:04:23,728 epoch 25: avg loss=4.866337, avg quantization error=0.015179.
2022-03-08 06:04:23,729 begin to evaluate model.
2022-03-08 06:06:43,328 compute mAP.
2022-03-08 06:07:25,555 val mAP=0.690004.
2022-03-08 06:07:25,556 save the best model, db_codes and db_targets.
2022-03-08 06:07:30,427 finish saving.
2022-03-08 06:21:10,741 epoch 26: avg loss=4.855520, avg quantization error=0.015164.
2022-03-08 06:21:10,742 begin to evaluate model.
2022-03-08 06:23:30,488 compute mAP.
2022-03-08 06:24:11,786 val mAP=0.690524.
2022-03-08 06:24:11,786 save the best model, db_codes and db_targets.
2022-03-08 06:24:13,430 finish saving.
2022-03-08 06:36:57,801 epoch 27: avg loss=4.854084, avg quantization error=0.015153.
2022-03-08 06:36:57,802 begin to evaluate model.
2022-03-08 06:39:21,848 compute mAP.
2022-03-08 06:40:00,155 val mAP=0.694068.
2022-03-08 06:40:00,156 save the best model, db_codes and db_targets.
2022-03-08 06:40:02,835 finish saving.
2022-03-08 06:52:58,682 epoch 28: avg loss=4.847690, avg quantization error=0.015131.
2022-03-08 06:52:58,682 begin to evaluate model.
2022-03-08 06:55:24,068 compute mAP.
2022-03-08 06:56:01,931 val mAP=0.693957.
2022-03-08 06:56:01,932 the monitor loses its patience to 9!.
2022-03-08 07:08:27,901 epoch 29: avg loss=4.840428, avg quantization error=0.015152.
2022-03-08 07:08:27,902 begin to evaluate model.
2022-03-08 07:10:55,079 compute mAP.
2022-03-08 07:11:35,078 val mAP=0.695072.
2022-03-08 07:11:35,082 save the best model, db_codes and db_targets.
2022-03-08 07:11:37,591 finish saving.
2022-03-08 07:24:21,112 epoch 30: avg loss=4.839156, avg quantization error=0.015127.
2022-03-08 07:24:21,112 begin to evaluate model.
2022-03-08 07:26:49,629 compute mAP.
2022-03-08 07:27:28,328 val mAP=0.694268.
2022-03-08 07:27:28,328 the monitor loses its patience to 9!.
2022-03-08 07:40:16,181 epoch 31: avg loss=4.831715, avg quantization error=0.015119.
2022-03-08 07:40:16,181 begin to evaluate model.
2022-03-08 07:42:42,786 compute mAP.
2022-03-08 07:43:20,514 val mAP=0.696097.
2022-03-08 07:43:20,515 save the best model, db_codes and db_targets.
2022-03-08 07:43:24,127 finish saving.
2022-03-08 07:56:06,506 epoch 32: avg loss=4.828006, avg quantization error=0.015118.
2022-03-08 07:56:06,507 begin to evaluate model.
2022-03-08 07:58:35,985 compute mAP.
2022-03-08 07:59:11,705 val mAP=0.696441.
2022-03-08 07:59:11,706 save the best model, db_codes and db_targets.
2022-03-08 07:59:15,264 finish saving.
2022-03-08 08:12:14,109 epoch 33: avg loss=4.825413, avg quantization error=0.015083.
2022-03-08 08:12:14,109 begin to evaluate model.
2022-03-08 08:14:41,268 compute mAP.
2022-03-08 08:15:18,636 val mAP=0.697703.
2022-03-08 08:15:18,637 save the best model, db_codes and db_targets.
2022-03-08 08:15:22,226 finish saving.
2022-03-08 08:28:12,742 epoch 34: avg loss=4.819594, avg quantization error=0.015068.
2022-03-08 08:28:12,743 begin to evaluate model.
2022-03-08 08:30:40,314 compute mAP.
2022-03-08 08:31:16,192 val mAP=0.697393.
2022-03-08 08:31:16,196 the monitor loses its patience to 9!.
2022-03-08 08:44:25,433 epoch 35: avg loss=4.815123, avg quantization error=0.015072.
2022-03-08 08:44:25,433 begin to evaluate model.
2022-03-08 08:46:53,308 compute mAP.
2022-03-08 08:47:32,812 val mAP=0.699857.
2022-03-08 08:47:32,813 save the best model, db_codes and db_targets.
2022-03-08 08:47:36,938 finish saving.
2022-03-08 09:00:16,027 epoch 36: avg loss=4.811555, avg quantization error=0.015057.
2022-03-08 09:00:16,028 begin to evaluate model.
2022-03-08 09:02:44,969 compute mAP.
2022-03-08 09:03:21,515 val mAP=0.700116.
2022-03-08 09:03:21,516 save the best model, db_codes and db_targets.
2022-03-08 09:03:23,774 finish saving.
2022-03-08 09:15:50,702 epoch 37: avg loss=4.808603, avg quantization error=0.015048.
2022-03-08 09:15:50,703 begin to evaluate model.
2022-03-08 09:18:20,412 compute mAP.
2022-03-08 09:18:56,724 val mAP=0.698866.
2022-03-08 09:18:56,725 the monitor loses its patience to 9!.
2022-03-08 09:32:16,965 epoch 38: avg loss=4.804334, avg quantization error=0.015054.
2022-03-08 09:32:16,965 begin to evaluate model.
2022-03-08 09:34:43,847 compute mAP.
2022-03-08 09:35:19,265 val mAP=0.700714.
2022-03-08 09:35:19,266 save the best model, db_codes and db_targets.
2022-03-08 09:35:21,868 finish saving.
2022-03-08 09:47:41,009 epoch 39: avg loss=4.798200, avg quantization error=0.015034.
2022-03-08 09:47:41,010 begin to evaluate model.
2022-03-08 09:50:05,803 compute mAP.
2022-03-08 09:50:44,983 val mAP=0.701257.
2022-03-08 09:50:44,984 save the best model, db_codes and db_targets.
2022-03-08 09:50:48,544 finish saving.
2022-03-08 10:03:39,167 epoch 40: avg loss=4.799926, avg quantization error=0.015019.
2022-03-08 10:03:39,168 begin to evaluate model.
2022-03-08 10:05:51,333 compute mAP.
2022-03-08 10:06:19,922 val mAP=0.701419.
2022-03-08 10:06:19,922 save the best model, db_codes and db_targets.
2022-03-08 10:06:21,062 finish saving.
2022-03-08 10:17:35,576 epoch 41: avg loss=4.795610, avg quantization error=0.015024.
2022-03-08 10:17:35,576 begin to evaluate model.
2022-03-08 10:20:21,570 compute mAP.
2022-03-08 10:20:55,952 val mAP=0.701305.
2022-03-08 10:20:55,953 the monitor loses its patience to 9!.
2022-03-08 10:31:34,310 epoch 42: avg loss=4.792111, avg quantization error=0.015010.
2022-03-08 10:31:34,310 begin to evaluate model.
2022-03-08 10:34:20,858 compute mAP.
2022-03-08 10:34:59,453 val mAP=0.701797.
2022-03-08 10:34:59,454 save the best model, db_codes and db_targets.
2022-03-08 10:35:01,382 finish saving.
2022-03-08 10:45:29,103 epoch 43: avg loss=4.790585, avg quantization error=0.015011.
2022-03-08 10:45:29,104 begin to evaluate model.
2022-03-08 10:48:12,364 compute mAP.
2022-03-08 10:48:51,038 val mAP=0.702170.
2022-03-08 10:48:51,039 save the best model, db_codes and db_targets.
2022-03-08 10:48:52,575 finish saving.
2022-03-08 10:59:31,833 epoch 44: avg loss=4.788220, avg quantization error=0.015007.
2022-03-08 10:59:31,833 begin to evaluate model.
2022-03-08 11:02:16,224 compute mAP.
2022-03-08 11:02:53,623 val mAP=0.701779.
2022-03-08 11:02:53,624 the monitor loses its patience to 9!.
2022-03-08 11:13:11,357 epoch 45: avg loss=4.789888, avg quantization error=0.015007.
2022-03-08 11:13:11,357 begin to evaluate model.
2022-03-08 11:15:52,337 compute mAP.
2022-03-08 11:16:26,741 val mAP=0.702029.
2022-03-08 11:16:26,742 the monitor loses its patience to 8!.
2022-03-08 11:26:24,230 epoch 46: avg loss=4.789868, avg quantization error=0.015007.
2022-03-08 11:26:24,231 begin to evaluate model.
2022-03-08 11:29:13,344 compute mAP.
2022-03-08 11:29:53,245 val mAP=0.702445.
2022-03-08 11:29:53,245 save the best model, db_codes and db_targets.
2022-03-08 11:29:56,447 finish saving.
2022-03-08 11:40:10,886 epoch 47: avg loss=4.787027, avg quantization error=0.015001.
2022-03-08 11:40:10,886 begin to evaluate model.
2022-03-08 11:42:57,174 compute mAP.
2022-03-08 11:43:37,017 val mAP=0.702176.
2022-03-08 11:43:37,018 the monitor loses its patience to 9!.
2022-03-08 11:53:46,346 epoch 48: avg loss=4.788286, avg quantization error=0.015007.
2022-03-08 11:53:46,347 begin to evaluate model.
2022-03-08 11:56:39,823 compute mAP.
2022-03-08 11:57:17,324 val mAP=0.702386.
2022-03-08 11:57:17,325 the monitor loses its patience to 8!.
2022-03-08 12:07:22,233 epoch 49: avg loss=4.786979, avg quantization error=0.015002.
2022-03-08 12:07:22,234 begin to evaluate model.
2022-03-08 12:10:12,453 compute mAP.
2022-03-08 12:10:49,918 val mAP=0.702354.
2022-03-08 12:10:49,919 the monitor loses its patience to 7!.
2022-03-08 12:10:49,920 free the queue memory.
2022-03-08 12:10:49,920 finish trainning at epoch 49.
2022-03-08 12:10:49,974 finish training, now load the best model and codes.
2022-03-08 12:10:50,844 begin to test model.
2022-03-08 12:10:50,844 compute mAP.
2022-03-08 12:11:26,545 test mAP=0.702445.
2022-03-08 12:11:26,545 compute PR curve and P@top1000 curve.