-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCifarI64bitsSymm.log
300 lines (300 loc) · 16.4 KB
/
CifarI64bitsSymm.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
2022-03-10 20:05:18,123 config: Namespace(K=256, M=8, T=0.4, alpha=10, batch_size=128, checkpoint_root='./checkpoints/CifarI64bitsSymm', dataset='CIFAR10', device='cuda:2', download_cifar10=False, epoch_num=50, eval_interval=1, feat_dim=128, final_lr=1e-05, hp_beta=0.001, hp_gamma=0.5, hp_lambda=0.05, is_asym_dist=False, lr=0.01, lr_scaling=0.001, mode='debias', momentum=0.9, monitor_counter=10, notes='CifarI64bitsSymm', num_workers=10, optimizer='SGD', pos_prior=0.1, protocal='I', queue_begin_epoch=3, seed=2021, start_lr=1e-05, topK=1000, trainable_layer_num=2, use_scheduler=True, use_writer=True, vgg_model_path=None, warmup_epoch_num=1).
2022-03-10 20:05:18,124 prepare CIFAR10 datatset.
2022-03-10 20:05:19,763 setup model.
2022-03-10 20:05:22,692 define loss function.
2022-03-10 20:05:22,692 setup SGD optimizer.
2022-03-10 20:05:22,693 prepare monitor and evaluator.
2022-03-10 20:05:22,693 begin to train model.
2022-03-10 20:05:22,694 register queue.
2022-03-10 20:15:11,569 epoch 0: avg loss=3.898511, avg quantization error=0.016009.
2022-03-10 20:15:11,570 begin to evaluate model.
2022-03-10 20:17:47,100 compute mAP.
2022-03-10 20:18:13,047 val mAP=0.479688.
2022-03-10 20:18:13,048 save the best model, db_codes and db_targets.
2022-03-10 20:18:13,779 finish saving.
2022-03-10 20:28:28,796 epoch 1: avg loss=3.154392, avg quantization error=0.013354.
2022-03-10 20:28:28,797 begin to evaluate model.
2022-03-10 20:31:06,861 compute mAP.
2022-03-10 20:31:30,963 val mAP=0.509225.
2022-03-10 20:31:30,964 save the best model, db_codes and db_targets.
2022-03-10 20:31:35,246 finish saving.
2022-03-10 20:41:42,751 epoch 2: avg loss=2.973001, avg quantization error=0.013231.
2022-03-10 20:41:42,751 begin to evaluate model.
2022-03-10 20:44:17,937 compute mAP.
2022-03-10 20:44:39,530 val mAP=0.539765.
2022-03-10 20:44:39,531 save the best model, db_codes and db_targets.
2022-03-10 20:44:43,660 finish saving.
2022-03-10 20:55:12,098 epoch 3: avg loss=5.278750, avg quantization error=0.016086.
2022-03-10 20:55:12,098 begin to evaluate model.
2022-03-10 20:57:43,058 compute mAP.
2022-03-10 20:58:04,542 val mAP=0.620756.
2022-03-10 20:58:04,542 save the best model, db_codes and db_targets.
2022-03-10 20:58:08,687 finish saving.
2022-03-10 21:08:20,356 epoch 4: avg loss=5.153096, avg quantization error=0.015994.
2022-03-10 21:08:20,357 begin to evaluate model.
2022-03-10 21:10:48,236 compute mAP.
2022-03-10 21:11:10,143 val mAP=0.628381.
2022-03-10 21:11:10,144 save the best model, db_codes and db_targets.
2022-03-10 21:11:14,383 finish saving.
2022-03-10 21:21:20,331 epoch 5: avg loss=5.112666, avg quantization error=0.015867.
2022-03-10 21:21:20,331 begin to evaluate model.
2022-03-10 21:23:54,452 compute mAP.
2022-03-10 21:24:16,326 val mAP=0.638749.
2022-03-10 21:24:16,326 save the best model, db_codes and db_targets.
2022-03-10 21:24:20,346 finish saving.
2022-03-10 21:34:57,921 epoch 6: avg loss=5.084419, avg quantization error=0.015777.
2022-03-10 21:34:57,922 begin to evaluate model.
2022-03-10 21:37:26,794 compute mAP.
2022-03-10 21:37:48,615 val mAP=0.642785.
2022-03-10 21:37:48,616 save the best model, db_codes and db_targets.
2022-03-10 21:37:52,694 finish saving.
2022-03-10 21:48:05,534 epoch 7: avg loss=5.062510, avg quantization error=0.015677.
2022-03-10 21:48:05,534 begin to evaluate model.
2022-03-10 21:50:38,947 compute mAP.
2022-03-10 21:51:00,686 val mAP=0.647314.
2022-03-10 21:51:00,687 save the best model, db_codes and db_targets.
2022-03-10 21:51:04,876 finish saving.
2022-03-10 22:01:47,006 epoch 8: avg loss=5.040775, avg quantization error=0.015575.
2022-03-10 22:01:47,006 begin to evaluate model.
2022-03-10 22:04:10,491 compute mAP.
2022-03-10 22:04:32,049 val mAP=0.649324.
2022-03-10 22:04:32,049 save the best model, db_codes and db_targets.
2022-03-10 22:04:36,108 finish saving.
2022-03-10 22:15:50,545 epoch 9: avg loss=5.023812, avg quantization error=0.015471.
2022-03-10 22:15:50,545 begin to evaluate model.
2022-03-10 22:18:01,209 compute mAP.
2022-03-10 22:18:23,285 val mAP=0.653907.
2022-03-10 22:18:23,286 save the best model, db_codes and db_targets.
2022-03-10 22:18:27,122 finish saving.
2022-03-10 22:29:41,915 epoch 10: avg loss=5.008426, avg quantization error=0.015421.
2022-03-10 22:29:41,916 begin to evaluate model.
2022-03-10 22:31:53,526 compute mAP.
2022-03-10 22:32:15,258 val mAP=0.654137.
2022-03-10 22:32:15,259 save the best model, db_codes and db_targets.
2022-03-10 22:32:19,314 finish saving.
2022-03-10 22:43:32,032 epoch 11: avg loss=4.995449, avg quantization error=0.015379.
2022-03-10 22:43:32,032 begin to evaluate model.
2022-03-10 22:45:35,162 compute mAP.
2022-03-10 22:45:56,909 val mAP=0.658165.
2022-03-10 22:45:56,909 save the best model, db_codes and db_targets.
2022-03-10 22:46:01,108 finish saving.
2022-03-10 22:57:29,143 epoch 12: avg loss=4.981472, avg quantization error=0.015333.
2022-03-10 22:57:29,143 begin to evaluate model.
2022-03-10 22:59:30,583 compute mAP.
2022-03-10 22:59:52,298 val mAP=0.659628.
2022-03-10 22:59:52,298 save the best model, db_codes and db_targets.
2022-03-10 22:59:56,350 finish saving.
2022-03-10 23:11:51,171 epoch 13: avg loss=4.969851, avg quantization error=0.015327.
2022-03-10 23:11:51,172 begin to evaluate model.
2022-03-10 23:13:53,462 compute mAP.
2022-03-10 23:14:15,717 val mAP=0.663537.
2022-03-10 23:14:15,718 save the best model, db_codes and db_targets.
2022-03-10 23:14:19,758 finish saving.
2022-03-10 23:25:41,088 epoch 14: avg loss=4.956910, avg quantization error=0.015338.
2022-03-10 23:25:41,088 begin to evaluate model.
2022-03-10 23:27:37,660 compute mAP.
2022-03-10 23:27:59,325 val mAP=0.662842.
2022-03-10 23:27:59,325 the monitor loses its patience to 9!.
2022-03-10 23:39:47,762 epoch 15: avg loss=4.947573, avg quantization error=0.015326.
2022-03-10 23:39:47,762 begin to evaluate model.
2022-03-10 23:41:42,882 compute mAP.
2022-03-10 23:42:05,017 val mAP=0.665215.
2022-03-10 23:42:05,018 save the best model, db_codes and db_targets.
2022-03-10 23:42:09,161 finish saving.
2022-03-10 23:54:13,299 epoch 16: avg loss=4.933857, avg quantization error=0.015323.
2022-03-10 23:54:13,299 begin to evaluate model.
2022-03-10 23:56:04,173 compute mAP.
2022-03-10 23:56:25,950 val mAP=0.665663.
2022-03-10 23:56:25,950 save the best model, db_codes and db_targets.
2022-03-10 23:56:30,101 finish saving.
2022-03-11 00:08:43,914 epoch 17: avg loss=4.923920, avg quantization error=0.015323.
2022-03-11 00:08:43,914 begin to evaluate model.
2022-03-11 00:10:34,628 compute mAP.
2022-03-11 00:10:56,551 val mAP=0.667614.
2022-03-11 00:10:56,552 save the best model, db_codes and db_targets.
2022-03-11 00:11:00,658 finish saving.
2022-03-11 00:23:19,890 epoch 18: avg loss=4.913188, avg quantization error=0.015340.
2022-03-11 00:23:19,890 begin to evaluate model.
2022-03-11 00:25:10,953 compute mAP.
2022-03-11 00:25:33,128 val mAP=0.671518.
2022-03-11 00:25:33,129 save the best model, db_codes and db_targets.
2022-03-11 00:25:37,302 finish saving.
2022-03-11 00:37:50,587 epoch 19: avg loss=4.908551, avg quantization error=0.015343.
2022-03-11 00:37:50,588 begin to evaluate model.
2022-03-11 00:39:42,658 compute mAP.
2022-03-11 00:40:04,880 val mAP=0.670947.
2022-03-11 00:40:04,881 the monitor loses its patience to 9!.
2022-03-11 00:52:23,460 epoch 20: avg loss=4.900838, avg quantization error=0.015293.
2022-03-11 00:52:23,460 begin to evaluate model.
2022-03-11 00:54:13,611 compute mAP.
2022-03-11 00:54:35,333 val mAP=0.671466.
2022-03-11 00:54:35,334 the monitor loses its patience to 8!.
2022-03-11 01:06:59,364 epoch 21: avg loss=4.893788, avg quantization error=0.015284.
2022-03-11 01:06:59,365 begin to evaluate model.
2022-03-11 01:08:47,598 compute mAP.
2022-03-11 01:09:10,007 val mAP=0.674384.
2022-03-11 01:09:10,008 save the best model, db_codes and db_targets.
2022-03-11 01:09:14,263 finish saving.
2022-03-11 01:21:29,244 epoch 22: avg loss=4.888527, avg quantization error=0.015264.
2022-03-11 01:21:29,245 begin to evaluate model.
2022-03-11 01:23:12,359 compute mAP.
2022-03-11 01:23:34,640 val mAP=0.675538.
2022-03-11 01:23:34,640 save the best model, db_codes and db_targets.
2022-03-11 01:23:38,766 finish saving.
2022-03-11 01:35:59,939 epoch 23: avg loss=4.878351, avg quantization error=0.015265.
2022-03-11 01:35:59,939 begin to evaluate model.
2022-03-11 01:37:38,910 compute mAP.
2022-03-11 01:38:01,299 val mAP=0.679614.
2022-03-11 01:38:01,300 save the best model, db_codes and db_targets.
2022-03-11 01:38:09,071 finish saving.
2022-03-11 01:50:25,909 epoch 24: avg loss=4.872174, avg quantization error=0.015262.
2022-03-11 01:50:25,910 begin to evaluate model.
2022-03-11 01:52:02,873 compute mAP.
2022-03-11 01:52:25,068 val mAP=0.678658.
2022-03-11 01:52:25,069 the monitor loses its patience to 9!.
2022-03-11 02:05:07,462 epoch 25: avg loss=4.865496, avg quantization error=0.015246.
2022-03-11 02:05:07,462 begin to evaluate model.
2022-03-11 02:06:48,032 compute mAP.
2022-03-11 02:07:09,596 val mAP=0.680668.
2022-03-11 02:07:09,597 save the best model, db_codes and db_targets.
2022-03-11 02:07:13,809 finish saving.
2022-03-11 02:19:28,167 epoch 26: avg loss=4.854545, avg quantization error=0.015231.
2022-03-11 02:19:28,167 begin to evaluate model.
2022-03-11 02:21:06,269 compute mAP.
2022-03-11 02:21:28,283 val mAP=0.680598.
2022-03-11 02:21:28,283 the monitor loses its patience to 9!.
2022-03-11 02:33:45,247 epoch 27: avg loss=4.849651, avg quantization error=0.015228.
2022-03-11 02:33:45,248 begin to evaluate model.
2022-03-11 02:35:26,494 compute mAP.
2022-03-11 02:35:48,024 val mAP=0.681966.
2022-03-11 02:35:48,025 save the best model, db_codes and db_targets.
2022-03-11 02:35:52,568 finish saving.
2022-03-11 02:48:13,298 epoch 28: avg loss=4.845225, avg quantization error=0.015202.
2022-03-11 02:48:13,298 begin to evaluate model.
2022-03-11 02:49:57,331 compute mAP.
2022-03-11 02:50:19,692 val mAP=0.682632.
2022-03-11 02:50:19,693 save the best model, db_codes and db_targets.
2022-03-11 02:50:24,223 finish saving.
2022-03-11 03:02:48,819 epoch 29: avg loss=4.838322, avg quantization error=0.015187.
2022-03-11 03:02:48,820 begin to evaluate model.
2022-03-11 03:04:36,078 compute mAP.
2022-03-11 03:04:58,029 val mAP=0.684803.
2022-03-11 03:04:58,029 save the best model, db_codes and db_targets.
2022-03-11 03:05:02,177 finish saving.
2022-03-11 03:17:34,219 epoch 30: avg loss=4.837443, avg quantization error=0.015186.
2022-03-11 03:17:34,219 begin to evaluate model.
2022-03-11 03:19:16,695 compute mAP.
2022-03-11 03:19:38,184 val mAP=0.686145.
2022-03-11 03:19:38,185 save the best model, db_codes and db_targets.
2022-03-11 03:19:42,590 finish saving.
2022-03-11 03:32:00,779 epoch 31: avg loss=4.831107, avg quantization error=0.015173.
2022-03-11 03:32:00,779 begin to evaluate model.
2022-03-11 03:33:46,180 compute mAP.
2022-03-11 03:34:08,131 val mAP=0.686060.
2022-03-11 03:34:08,131 the monitor loses its patience to 9!.
2022-03-11 03:46:00,725 epoch 32: avg loss=4.825619, avg quantization error=0.015140.
2022-03-11 03:46:00,725 begin to evaluate model.
2022-03-11 03:47:54,022 compute mAP.
2022-03-11 03:48:16,042 val mAP=0.685813.
2022-03-11 03:48:16,043 the monitor loses its patience to 8!.
2022-03-11 04:00:22,293 epoch 33: avg loss=4.822897, avg quantization error=0.015142.
2022-03-11 04:00:22,294 begin to evaluate model.
2022-03-11 04:02:10,211 compute mAP.
2022-03-11 04:02:32,378 val mAP=0.687362.
2022-03-11 04:02:32,379 save the best model, db_codes and db_targets.
2022-03-11 04:02:36,625 finish saving.
2022-03-11 04:14:50,109 epoch 34: avg loss=4.816505, avg quantization error=0.015117.
2022-03-11 04:14:50,109 begin to evaluate model.
2022-03-11 04:16:36,954 compute mAP.
2022-03-11 04:16:58,615 val mAP=0.688348.
2022-03-11 04:16:58,616 save the best model, db_codes and db_targets.
2022-03-11 04:17:02,257 finish saving.
2022-03-11 04:29:08,644 epoch 35: avg loss=4.811126, avg quantization error=0.015113.
2022-03-11 04:29:08,645 begin to evaluate model.
2022-03-11 04:30:54,629 compute mAP.
2022-03-11 04:31:16,497 val mAP=0.689266.
2022-03-11 04:31:16,498 save the best model, db_codes and db_targets.
2022-03-11 04:31:20,525 finish saving.
2022-03-11 04:43:26,650 epoch 36: avg loss=4.808302, avg quantization error=0.015097.
2022-03-11 04:43:26,650 begin to evaluate model.
2022-03-11 04:45:17,877 compute mAP.
2022-03-11 04:45:39,712 val mAP=0.690835.
2022-03-11 04:45:39,713 save the best model, db_codes and db_targets.
2022-03-11 04:45:43,864 finish saving.
2022-03-11 04:58:05,016 epoch 37: avg loss=4.806423, avg quantization error=0.015096.
2022-03-11 04:58:05,016 begin to evaluate model.
2022-03-11 04:59:53,393 compute mAP.
2022-03-11 05:00:15,565 val mAP=0.689415.
2022-03-11 05:00:15,565 the monitor loses its patience to 9!.
2022-03-11 05:12:11,783 epoch 38: avg loss=4.801657, avg quantization error=0.015103.
2022-03-11 05:12:11,784 begin to evaluate model.
2022-03-11 05:13:59,925 compute mAP.
2022-03-11 05:14:21,674 val mAP=0.692152.
2022-03-11 05:14:21,675 save the best model, db_codes and db_targets.
2022-03-11 05:14:25,736 finish saving.
2022-03-11 05:26:42,423 epoch 39: avg loss=4.798356, avg quantization error=0.015075.
2022-03-11 05:26:42,427 begin to evaluate model.
2022-03-11 05:28:31,015 compute mAP.
2022-03-11 05:28:52,540 val mAP=0.693631.
2022-03-11 05:28:52,540 save the best model, db_codes and db_targets.
2022-03-11 05:28:56,743 finish saving.
2022-03-11 05:41:33,668 epoch 40: avg loss=4.795281, avg quantization error=0.015081.
2022-03-11 05:41:33,668 begin to evaluate model.
2022-03-11 05:43:20,212 compute mAP.
2022-03-11 05:43:42,596 val mAP=0.693378.
2022-03-11 05:43:42,597 the monitor loses its patience to 9!.
2022-03-11 05:55:22,931 epoch 41: avg loss=4.793431, avg quantization error=0.015060.
2022-03-11 05:55:22,931 begin to evaluate model.
2022-03-11 05:57:07,204 compute mAP.
2022-03-11 05:57:29,366 val mAP=0.693474.
2022-03-11 05:57:29,367 the monitor loses its patience to 8!.
2022-03-11 06:09:35,441 epoch 42: avg loss=4.792641, avg quantization error=0.015051.
2022-03-11 06:09:35,441 begin to evaluate model.
2022-03-11 06:11:20,664 compute mAP.
2022-03-11 06:11:42,508 val mAP=0.693494.
2022-03-11 06:11:42,509 the monitor loses its patience to 7!.
2022-03-11 06:24:03,863 epoch 43: avg loss=4.788449, avg quantization error=0.015050.
2022-03-11 06:24:03,863 begin to evaluate model.
2022-03-11 06:25:51,300 compute mAP.
2022-03-11 06:26:13,098 val mAP=0.693627.
2022-03-11 06:26:13,099 the monitor loses its patience to 6!.
2022-03-11 06:38:30,444 epoch 44: avg loss=4.786652, avg quantization error=0.015048.
2022-03-11 06:38:30,445 begin to evaluate model.
2022-03-11 06:40:18,935 compute mAP.
2022-03-11 06:40:40,807 val mAP=0.692879.
2022-03-11 06:40:40,807 the monitor loses its patience to 5!.
2022-03-11 06:52:49,544 epoch 45: avg loss=4.788976, avg quantization error=0.015049.
2022-03-11 06:52:49,544 begin to evaluate model.
2022-03-11 06:54:42,948 compute mAP.
2022-03-11 06:55:04,717 val mAP=0.693110.
2022-03-11 06:55:04,718 the monitor loses its patience to 4!.
2022-03-11 07:07:22,336 epoch 46: avg loss=4.786933, avg quantization error=0.015048.
2022-03-11 07:07:22,336 begin to evaluate model.
2022-03-11 07:09:11,274 compute mAP.
2022-03-11 07:09:33,144 val mAP=0.693388.
2022-03-11 07:09:33,145 the monitor loses its patience to 3!.
2022-03-11 07:21:35,276 epoch 47: avg loss=4.784443, avg quantization error=0.015044.
2022-03-11 07:21:35,276 begin to evaluate model.
2022-03-11 07:23:24,653 compute mAP.
2022-03-11 07:23:46,332 val mAP=0.693550.
2022-03-11 07:23:46,333 the monitor loses its patience to 2!.
2022-03-11 07:36:16,162 epoch 48: avg loss=4.786695, avg quantization error=0.015043.
2022-03-11 07:36:16,162 begin to evaluate model.
2022-03-11 07:38:02,799 compute mAP.
2022-03-11 07:38:24,577 val mAP=0.693615.
2022-03-11 07:38:24,578 the monitor loses its patience to 1!.
2022-03-11 07:51:01,251 epoch 49: avg loss=4.782734, avg quantization error=0.015047.
2022-03-11 07:51:01,252 begin to evaluate model.
2022-03-11 07:52:43,198 compute mAP.
2022-03-11 07:53:05,137 val mAP=0.693563.
2022-03-11 07:53:05,138 the monitor loses its patience to 0!.
2022-03-11 07:53:05,138 early stop.
2022-03-11 07:53:05,138 free the queue memory.
2022-03-11 07:53:05,138 finish trainning at epoch 49.
2022-03-11 07:53:05,151 finish training, now load the best model and codes.
2022-03-11 07:53:05,643 begin to test model.
2022-03-11 07:53:05,643 compute mAP.
2022-03-11 07:53:27,645 test mAP=0.693631.
2022-03-11 07:53:27,646 compute PR curve and P@top1000 curve.
2022-03-11 07:54:13,737 finish testing.
2022-03-11 07:54:13,737 finish all procedures.