-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCifarI64bitsSymm.log
executable file
·302 lines (302 loc) · 16.5 KB
/
CifarI64bitsSymm.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
2022-03-07 21:43:38,855 config: Namespace(K=256, M=8, T=0.4, alpha=10, batch_size=128, checkpoint_root='./checkpoints/CifarI64bitsSymm', dataset='CIFAR10', device='cuda:0', download_cifar10=False, epoch_num=50, eval_interval=1, feat_dim=128, final_lr=1e-05, hp_beta=0.001, hp_gamma=0.5, hp_lambda=0.05, is_asym_dist=False, lr=0.01, lr_scaling=0.001, mode='debias', momentum=0.9, monitor_counter=10, notes='CifarI64bitsSymm', num_workers=20, optimizer='SGD', pos_prior=0.1, protocal='I', queue_begin_epoch=3, seed=2021, start_lr=1e-05, topK=1000, trainable_layer_num=2, use_scheduler=True, use_writer=True, vgg_model_path='vgg16.pth', warmup_epoch_num=1).
2022-03-07 21:43:38,855 prepare CIFAR10 datatset.
2022-03-07 21:43:40,832 setup model.
2022-03-07 21:43:49,442 define loss function.
2022-03-07 21:43:49,442 setup SGD optimizer.
2022-03-07 21:43:49,444 prepare monitor and evaluator.
2022-03-07 21:43:49,445 begin to train model.
2022-03-07 21:43:49,446 register queue.
2022-03-07 21:46:50,690 epoch 0: avg loss=3.893124, avg quantization error=0.016370.
2022-03-07 21:46:50,698 begin to evaluate model.
2022-03-07 21:48:06,940 compute mAP.
2022-03-07 21:48:24,147 val mAP=0.566021.
2022-03-07 21:48:24,148 save the best model, db_codes and db_targets.
2022-03-07 21:48:26,638 finish saving.
2022-03-07 21:51:29,106 epoch 1: avg loss=3.115020, avg quantization error=0.013594.
2022-03-07 21:51:29,107 begin to evaluate model.
2022-03-07 21:52:45,620 compute mAP.
2022-03-07 21:53:03,096 val mAP=0.576780.
2022-03-07 21:53:03,097 save the best model, db_codes and db_targets.
2022-03-07 21:53:05,646 finish saving.
2022-03-07 21:56:06,273 epoch 2: avg loss=2.926660, avg quantization error=0.013336.
2022-03-07 21:56:06,274 begin to evaluate model.
2022-03-07 21:57:22,337 compute mAP.
2022-03-07 21:57:39,729 val mAP=0.572874.
2022-03-07 21:57:39,730 the monitor loses its patience to 9!.
2022-03-07 22:00:37,920 epoch 3: avg loss=5.257419, avg quantization error=0.016044.
2022-03-07 22:00:37,920 begin to evaluate model.
2022-03-07 22:01:53,404 compute mAP.
2022-03-07 22:02:10,597 val mAP=0.633850.
2022-03-07 22:02:10,598 save the best model, db_codes and db_targets.
2022-03-07 22:02:13,259 finish saving.
2022-03-07 22:05:09,802 epoch 4: avg loss=5.128205, avg quantization error=0.016244.
2022-03-07 22:05:09,802 begin to evaluate model.
2022-03-07 22:06:26,047 compute mAP.
2022-03-07 22:06:43,883 val mAP=0.642177.
2022-03-07 22:06:43,884 save the best model, db_codes and db_targets.
2022-03-07 22:06:46,695 finish saving.
2022-03-07 22:09:47,967 epoch 5: avg loss=5.084722, avg quantization error=0.016212.
2022-03-07 22:09:47,968 begin to evaluate model.
2022-03-07 22:11:04,031 compute mAP.
2022-03-07 22:11:21,342 val mAP=0.650493.
2022-03-07 22:11:21,343 save the best model, db_codes and db_targets.
2022-03-07 22:11:24,037 finish saving.
2022-03-07 22:14:22,275 epoch 6: avg loss=5.053029, avg quantization error=0.016138.
2022-03-07 22:14:22,276 begin to evaluate model.
2022-03-07 22:15:37,999 compute mAP.
2022-03-07 22:15:55,233 val mAP=0.653553.
2022-03-07 22:15:55,234 save the best model, db_codes and db_targets.
2022-03-07 22:15:57,947 finish saving.
2022-03-07 22:18:56,217 epoch 7: avg loss=5.033644, avg quantization error=0.015996.
2022-03-07 22:18:56,218 begin to evaluate model.
2022-03-07 22:20:12,576 compute mAP.
2022-03-07 22:20:29,847 val mAP=0.650720.
2022-03-07 22:20:29,848 the monitor loses its patience to 9!.
2022-03-07 22:23:33,454 epoch 8: avg loss=5.018476, avg quantization error=0.015863.
2022-03-07 22:23:33,455 begin to evaluate model.
2022-03-07 22:24:49,745 compute mAP.
2022-03-07 22:25:06,805 val mAP=0.653422.
2022-03-07 22:25:06,806 the monitor loses its patience to 8!.
2022-03-07 22:28:08,914 epoch 9: avg loss=5.004537, avg quantization error=0.015730.
2022-03-07 22:28:08,916 begin to evaluate model.
2022-03-07 22:29:25,247 compute mAP.
2022-03-07 22:29:42,373 val mAP=0.656235.
2022-03-07 22:29:42,374 save the best model, db_codes and db_targets.
2022-03-07 22:29:44,967 finish saving.
2022-03-07 22:32:57,172 epoch 10: avg loss=4.994173, avg quantization error=0.015623.
2022-03-07 22:32:57,172 begin to evaluate model.
2022-03-07 22:34:13,266 compute mAP.
2022-03-07 22:34:30,372 val mAP=0.657800.
2022-03-07 22:34:30,373 save the best model, db_codes and db_targets.
2022-03-07 22:34:32,990 finish saving.
2022-03-07 22:37:42,987 epoch 11: avg loss=4.982881, avg quantization error=0.015519.
2022-03-07 22:37:42,987 begin to evaluate model.
2022-03-07 22:38:59,047 compute mAP.
2022-03-07 22:39:15,807 val mAP=0.660280.
2022-03-07 22:39:15,808 save the best model, db_codes and db_targets.
2022-03-07 22:39:18,442 finish saving.
2022-03-07 22:42:26,421 epoch 12: avg loss=4.970806, avg quantization error=0.015470.
2022-03-07 22:42:26,421 begin to evaluate model.
2022-03-07 22:43:42,888 compute mAP.
2022-03-07 22:44:00,063 val mAP=0.661604.
2022-03-07 22:44:00,065 save the best model, db_codes and db_targets.
2022-03-07 22:44:02,806 finish saving.
2022-03-07 22:47:14,317 epoch 13: avg loss=4.957412, avg quantization error=0.015390.
2022-03-07 22:47:14,318 begin to evaluate model.
2022-03-07 22:48:30,567 compute mAP.
2022-03-07 22:48:47,755 val mAP=0.664161.
2022-03-07 22:48:47,755 save the best model, db_codes and db_targets.
2022-03-07 22:48:50,444 finish saving.
2022-03-07 22:51:59,271 epoch 14: avg loss=4.949562, avg quantization error=0.015295.
2022-03-07 22:51:59,271 begin to evaluate model.
2022-03-07 22:53:16,109 compute mAP.
2022-03-07 22:53:33,647 val mAP=0.664523.
2022-03-07 22:53:33,648 save the best model, db_codes and db_targets.
2022-03-07 22:53:36,264 finish saving.
2022-03-07 22:56:47,392 epoch 15: avg loss=4.943632, avg quantization error=0.015230.
2022-03-07 22:56:47,393 begin to evaluate model.
2022-03-07 22:58:03,433 compute mAP.
2022-03-07 22:58:20,626 val mAP=0.666103.
2022-03-07 22:58:20,626 save the best model, db_codes and db_targets.
2022-03-07 22:58:23,292 finish saving.
2022-03-07 23:01:25,115 epoch 16: avg loss=4.932669, avg quantization error=0.015235.
2022-03-07 23:01:25,116 begin to evaluate model.
2022-03-07 23:02:39,495 compute mAP.
2022-03-07 23:02:57,185 val mAP=0.666960.
2022-03-07 23:02:57,185 save the best model, db_codes and db_targets.
2022-03-07 23:02:59,945 finish saving.
2022-03-07 23:05:57,708 epoch 17: avg loss=4.924254, avg quantization error=0.015216.
2022-03-07 23:05:57,708 begin to evaluate model.
2022-03-07 23:07:14,377 compute mAP.
2022-03-07 23:07:31,692 val mAP=0.668734.
2022-03-07 23:07:31,693 save the best model, db_codes and db_targets.
2022-03-07 23:07:34,574 finish saving.
2022-03-07 23:10:32,165 epoch 18: avg loss=4.915601, avg quantization error=0.015182.
2022-03-07 23:10:32,166 begin to evaluate model.
2022-03-07 23:11:48,016 compute mAP.
2022-03-07 23:12:05,178 val mAP=0.669652.
2022-03-07 23:12:05,178 save the best model, db_codes and db_targets.
2022-03-07 23:12:18,788 finish saving.
2022-03-07 23:15:14,805 epoch 19: avg loss=4.910041, avg quantization error=0.015143.
2022-03-07 23:15:14,806 begin to evaluate model.
2022-03-07 23:16:30,949 compute mAP.
2022-03-07 23:16:48,134 val mAP=0.671953.
2022-03-07 23:16:48,135 save the best model, db_codes and db_targets.
2022-03-07 23:16:50,888 finish saving.
2022-03-07 23:19:49,265 epoch 20: avg loss=4.903714, avg quantization error=0.015125.
2022-03-07 23:19:49,266 begin to evaluate model.
2022-03-07 23:21:05,147 compute mAP.
2022-03-07 23:21:22,732 val mAP=0.672206.
2022-03-07 23:21:22,732 save the best model, db_codes and db_targets.
2022-03-07 23:21:25,371 finish saving.
2022-03-07 23:24:32,180 epoch 21: avg loss=4.894183, avg quantization error=0.015113.
2022-03-07 23:24:32,181 begin to evaluate model.
2022-03-07 23:25:47,795 compute mAP.
2022-03-07 23:26:04,956 val mAP=0.674603.
2022-03-07 23:26:04,956 save the best model, db_codes and db_targets.
2022-03-07 23:26:07,569 finish saving.
2022-03-07 23:29:16,296 epoch 22: avg loss=4.887142, avg quantization error=0.015097.
2022-03-07 23:29:16,297 begin to evaluate model.
2022-03-07 23:30:32,118 compute mAP.
2022-03-07 23:30:49,420 val mAP=0.672300.
2022-03-07 23:30:49,421 the monitor loses its patience to 9!.
2022-03-07 23:33:58,769 epoch 23: avg loss=4.883076, avg quantization error=0.015072.
2022-03-07 23:33:58,769 begin to evaluate model.
2022-03-07 23:35:13,455 compute mAP.
2022-03-07 23:35:30,505 val mAP=0.676371.
2022-03-07 23:35:30,505 save the best model, db_codes and db_targets.
2022-03-07 23:35:33,109 finish saving.
2022-03-07 23:38:42,305 epoch 24: avg loss=4.876261, avg quantization error=0.015035.
2022-03-07 23:38:42,305 begin to evaluate model.
2022-03-07 23:39:59,260 compute mAP.
2022-03-07 23:40:16,496 val mAP=0.678108.
2022-03-07 23:40:16,497 save the best model, db_codes and db_targets.
2022-03-07 23:40:19,137 finish saving.
2022-03-07 23:43:28,527 epoch 25: avg loss=4.869824, avg quantization error=0.015026.
2022-03-07 23:43:28,527 begin to evaluate model.
2022-03-07 23:44:43,002 compute mAP.
2022-03-07 23:45:00,458 val mAP=0.679142.
2022-03-07 23:45:00,459 save the best model, db_codes and db_targets.
2022-03-07 23:45:03,272 finish saving.
2022-03-07 23:48:13,551 epoch 26: avg loss=4.861597, avg quantization error=0.015011.
2022-03-07 23:48:13,551 begin to evaluate model.
2022-03-07 23:49:29,726 compute mAP.
2022-03-07 23:49:46,610 val mAP=0.679279.
2022-03-07 23:49:46,611 save the best model, db_codes and db_targets.
2022-03-07 23:49:49,226 finish saving.
2022-03-07 23:52:53,780 epoch 27: avg loss=4.860347, avg quantization error=0.015008.
2022-03-07 23:52:53,781 begin to evaluate model.
2022-03-07 23:54:09,044 compute mAP.
2022-03-07 23:54:26,412 val mAP=0.681230.
2022-03-07 23:54:26,413 save the best model, db_codes and db_targets.
2022-03-07 23:54:29,065 finish saving.
2022-03-07 23:57:38,811 epoch 28: avg loss=4.854854, avg quantization error=0.015003.
2022-03-07 23:57:38,812 begin to evaluate model.
2022-03-07 23:58:53,749 compute mAP.
2022-03-07 23:59:11,301 val mAP=0.681653.
2022-03-07 23:59:11,301 save the best model, db_codes and db_targets.
2022-03-07 23:59:13,980 finish saving.
2022-03-08 00:02:20,235 epoch 29: avg loss=4.849040, avg quantization error=0.014983.
2022-03-08 00:02:20,235 begin to evaluate model.
2022-03-08 00:03:35,114 compute mAP.
2022-03-08 00:03:52,587 val mAP=0.682953.
2022-03-08 00:03:52,588 save the best model, db_codes and db_targets.
2022-03-08 00:03:59,674 finish saving.
2022-03-08 00:07:10,525 epoch 30: avg loss=4.842891, avg quantization error=0.014970.
2022-03-08 00:07:10,525 begin to evaluate model.
2022-03-08 00:08:25,993 compute mAP.
2022-03-08 00:08:43,712 val mAP=0.682916.
2022-03-08 00:08:43,713 the monitor loses its patience to 9!.
2022-03-08 00:11:47,102 epoch 31: avg loss=4.836016, avg quantization error=0.014974.
2022-03-08 00:11:47,103 begin to evaluate model.
2022-03-08 00:13:02,479 compute mAP.
2022-03-08 00:13:20,044 val mAP=0.684729.
2022-03-08 00:13:20,045 save the best model, db_codes and db_targets.
2022-03-08 00:13:22,740 finish saving.
2022-03-08 00:16:31,368 epoch 32: avg loss=4.833015, avg quantization error=0.014981.
2022-03-08 00:16:31,369 begin to evaluate model.
2022-03-08 00:17:46,847 compute mAP.
2022-03-08 00:18:04,418 val mAP=0.684492.
2022-03-08 00:18:04,418 the monitor loses its patience to 9!.
2022-03-08 00:21:06,232 epoch 33: avg loss=4.827125, avg quantization error=0.014980.
2022-03-08 00:21:06,233 begin to evaluate model.
2022-03-08 00:22:20,967 compute mAP.
2022-03-08 00:22:38,332 val mAP=0.689226.
2022-03-08 00:22:38,333 save the best model, db_codes and db_targets.
2022-03-08 00:22:41,017 finish saving.
2022-03-08 00:25:51,553 epoch 34: avg loss=4.822377, avg quantization error=0.014966.
2022-03-08 00:25:51,553 begin to evaluate model.
2022-03-08 00:27:05,900 compute mAP.
2022-03-08 00:27:23,137 val mAP=0.687808.
2022-03-08 00:27:23,138 the monitor loses its patience to 9!.
2022-03-08 00:30:26,650 epoch 35: avg loss=4.821703, avg quantization error=0.014980.
2022-03-08 00:30:26,650 begin to evaluate model.
2022-03-08 00:31:41,689 compute mAP.
2022-03-08 00:31:58,986 val mAP=0.689385.
2022-03-08 00:31:58,986 save the best model, db_codes and db_targets.
2022-03-08 00:32:01,652 finish saving.
2022-03-08 00:35:09,402 epoch 36: avg loss=4.815079, avg quantization error=0.014953.
2022-03-08 00:35:09,402 begin to evaluate model.
2022-03-08 00:36:24,253 compute mAP.
2022-03-08 00:36:41,352 val mAP=0.690513.
2022-03-08 00:36:41,353 save the best model, db_codes and db_targets.
2022-03-08 00:36:44,174 finish saving.
2022-03-08 00:39:48,133 epoch 37: avg loss=4.810202, avg quantization error=0.014961.
2022-03-08 00:39:48,133 begin to evaluate model.
2022-03-08 00:41:04,844 compute mAP.
2022-03-08 00:41:21,990 val mAP=0.692478.
2022-03-08 00:41:21,990 save the best model, db_codes and db_targets.
2022-03-08 00:41:24,619 finish saving.
2022-03-08 00:44:33,976 epoch 38: avg loss=4.808798, avg quantization error=0.014935.
2022-03-08 00:44:33,976 begin to evaluate model.
2022-03-08 00:45:48,452 compute mAP.
2022-03-08 00:46:05,733 val mAP=0.691776.
2022-03-08 00:46:05,734 the monitor loses its patience to 9!.
2022-03-08 00:49:15,732 epoch 39: avg loss=4.805263, avg quantization error=0.014945.
2022-03-08 00:49:15,733 begin to evaluate model.
2022-03-08 00:50:31,446 compute mAP.
2022-03-08 00:50:49,006 val mAP=0.690946.
2022-03-08 00:50:49,007 the monitor loses its patience to 8!.
2022-03-08 00:53:59,077 epoch 40: avg loss=4.802113, avg quantization error=0.014937.
2022-03-08 00:53:59,077 begin to evaluate model.
2022-03-08 00:55:13,727 compute mAP.
2022-03-08 00:55:30,886 val mAP=0.692121.
2022-03-08 00:55:30,887 the monitor loses its patience to 7!.
2022-03-08 00:58:39,899 epoch 41: avg loss=4.801940, avg quantization error=0.014921.
2022-03-08 00:58:39,900 begin to evaluate model.
2022-03-08 00:59:55,235 compute mAP.
2022-03-08 01:00:12,839 val mAP=0.692770.
2022-03-08 01:00:12,840 save the best model, db_codes and db_targets.
2022-03-08 01:00:15,387 finish saving.
2022-03-08 01:03:13,633 epoch 42: avg loss=4.796775, avg quantization error=0.014923.
2022-03-08 01:03:13,633 begin to evaluate model.
2022-03-08 01:04:30,672 compute mAP.
2022-03-08 01:04:48,404 val mAP=0.692275.
2022-03-08 01:04:48,404 the monitor loses its patience to 9!.
2022-03-08 01:07:58,943 epoch 43: avg loss=4.795534, avg quantization error=0.014908.
2022-03-08 01:07:58,943 begin to evaluate model.
2022-03-08 01:09:14,427 compute mAP.
2022-03-08 01:09:31,988 val mAP=0.692544.
2022-03-08 01:09:31,989 the monitor loses its patience to 8!.
2022-03-08 01:12:38,007 epoch 44: avg loss=4.794161, avg quantization error=0.014906.
2022-03-08 01:12:38,008 begin to evaluate model.
2022-03-08 01:13:54,583 compute mAP.
2022-03-08 01:14:11,691 val mAP=0.693131.
2022-03-08 01:14:11,692 save the best model, db_codes and db_targets.
2022-03-08 01:14:14,252 finish saving.
2022-03-08 01:17:22,398 epoch 45: avg loss=4.795650, avg quantization error=0.014904.
2022-03-08 01:17:22,399 begin to evaluate model.
2022-03-08 01:18:36,912 compute mAP.
2022-03-08 01:18:54,026 val mAP=0.693413.
2022-03-08 01:18:54,027 save the best model, db_codes and db_targets.
2022-03-08 01:18:57,336 finish saving.
2022-03-08 01:21:59,865 epoch 46: avg loss=4.793934, avg quantization error=0.014901.
2022-03-08 01:21:59,865 begin to evaluate model.
2022-03-08 01:23:14,404 compute mAP.
2022-03-08 01:23:32,061 val mAP=0.693350.
2022-03-08 01:23:32,062 the monitor loses its patience to 9!.
2022-03-08 01:26:39,723 epoch 47: avg loss=4.792976, avg quantization error=0.014902.
2022-03-08 01:26:39,724 begin to evaluate model.
2022-03-08 01:27:55,715 compute mAP.
2022-03-08 01:28:12,837 val mAP=0.693487.
2022-03-08 01:28:12,838 save the best model, db_codes and db_targets.
2022-03-08 01:28:15,545 finish saving.
2022-03-08 01:31:11,966 epoch 48: avg loss=4.791055, avg quantization error=0.014899.
2022-03-08 01:31:11,967 begin to evaluate model.
2022-03-08 01:32:26,625 compute mAP.
2022-03-08 01:32:44,316 val mAP=0.693449.
2022-03-08 01:32:44,317 the monitor loses its patience to 9!.
2022-03-08 01:35:50,877 epoch 49: avg loss=4.792194, avg quantization error=0.014899.
2022-03-08 01:35:50,878 begin to evaluate model.
2022-03-08 01:37:07,277 compute mAP.
2022-03-08 01:37:23,931 val mAP=0.693468.
2022-03-08 01:37:23,931 the monitor loses its patience to 8!.
2022-03-08 01:37:23,932 free the queue memory.
2022-03-08 01:37:23,932 finish trainning at epoch 49.
2022-03-08 01:37:23,950 finish training, now load the best model and codes.
2022-03-08 01:37:24,913 begin to test model.
2022-03-08 01:37:24,913 compute mAP.
2022-03-08 01:37:42,479 test mAP=0.693487.
2022-03-08 01:37:42,479 compute PR curve and P@top1000 curve.
2022-03-08 01:38:17,619 finish testing.
2022-03-08 01:38:17,619 finish all procedures.