-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCifarII16bits.log
executable file
·292 lines (292 loc) · 16 KB
/
CifarII16bits.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
2022-03-07 21:43:42,885 config: Namespace(K=256, M=2, T=0.35, alpha=10, batch_size=128, checkpoint_root='./checkpoints/CifarII16bits', dataset='CIFAR10', device='cuda:0', download_cifar10=False, epoch_num=50, eval_interval=1, feat_dim=16, final_lr=1e-05, hp_beta=0.01, hp_gamma=0.5, hp_lambda=0.01, is_asym_dist=True, lr=0.01, lr_scaling=0.001, mode='debias', momentum=0.9, monitor_counter=10, notes='CifarII16bits', num_workers=20, optimizer='SGD', pos_prior=0.1, protocal='II', queue_begin_epoch=15, seed=2021, start_lr=1e-05, topK=1000, trainable_layer_num=2, use_scheduler=True, use_writer=True, vgg_model_path='vgg16.pth', warmup_epoch_num=1).
2022-03-07 21:43:42,886 prepare CIFAR10 datatset.
2022-03-07 21:43:45,048 setup model.
2022-03-07 21:43:52,264 define loss function.
2022-03-07 21:43:52,265 setup SGD optimizer.
2022-03-07 21:43:52,266 prepare monitor and evaluator.
2022-03-07 21:43:52,266 begin to train model.
2022-03-07 21:43:52,267 register queue.
2022-03-07 21:44:13,999 epoch 0: avg loss=4.055814, avg quantization error=0.016865.
2022-03-07 21:44:14,016 begin to evaluate model.
2022-03-07 21:45:28,853 compute mAP.
2022-03-07 21:45:45,982 val mAP=0.510959.
2022-03-07 21:45:45,998 save the best model, db_codes and db_targets.
2022-03-07 21:45:48,729 finish saving.
2022-03-07 21:46:10,578 epoch 1: avg loss=3.050077, avg quantization error=0.016092.
2022-03-07 21:46:10,578 begin to evaluate model.
2022-03-07 21:47:27,590 compute mAP.
2022-03-07 21:47:44,825 val mAP=0.540476.
2022-03-07 21:47:44,826 save the best model, db_codes and db_targets.
2022-03-07 21:47:55,964 finish saving.
2022-03-07 21:48:17,353 epoch 2: avg loss=2.847339, avg quantization error=0.015550.
2022-03-07 21:48:17,377 begin to evaluate model.
2022-03-07 21:49:32,681 compute mAP.
2022-03-07 21:49:50,237 val mAP=0.548323.
2022-03-07 21:49:50,238 save the best model, db_codes and db_targets.
2022-03-07 21:49:52,832 finish saving.
2022-03-07 21:50:13,872 epoch 3: avg loss=2.691748, avg quantization error=0.015395.
2022-03-07 21:50:13,873 begin to evaluate model.
2022-03-07 21:51:29,830 compute mAP.
2022-03-07 21:51:47,114 val mAP=0.566954.
2022-03-07 21:51:47,115 save the best model, db_codes and db_targets.
2022-03-07 21:51:49,757 finish saving.
2022-03-07 21:52:10,539 epoch 4: avg loss=2.549976, avg quantization error=0.015271.
2022-03-07 21:52:10,540 begin to evaluate model.
2022-03-07 21:53:26,266 compute mAP.
2022-03-07 21:53:43,604 val mAP=0.570577.
2022-03-07 21:53:43,604 save the best model, db_codes and db_targets.
2022-03-07 21:53:46,145 finish saving.
2022-03-07 21:54:07,014 epoch 5: avg loss=2.439994, avg quantization error=0.015352.
2022-03-07 21:54:07,014 begin to evaluate model.
2022-03-07 21:55:23,336 compute mAP.
2022-03-07 21:55:40,560 val mAP=0.566726.
2022-03-07 21:55:40,560 the monitor loses its patience to 9!.
2022-03-07 21:56:01,696 epoch 6: avg loss=2.388028, avg quantization error=0.015227.
2022-03-07 21:56:01,696 begin to evaluate model.
2022-03-07 21:57:18,628 compute mAP.
2022-03-07 21:57:35,829 val mAP=0.572281.
2022-03-07 21:57:35,829 save the best model, db_codes and db_targets.
2022-03-07 21:57:38,497 finish saving.
2022-03-07 21:57:59,503 epoch 7: avg loss=2.337505, avg quantization error=0.015152.
2022-03-07 21:57:59,503 begin to evaluate model.
2022-03-07 21:59:16,297 compute mAP.
2022-03-07 21:59:33,407 val mAP=0.591448.
2022-03-07 21:59:33,408 save the best model, db_codes and db_targets.
2022-03-07 21:59:36,143 finish saving.
2022-03-07 21:59:57,856 epoch 8: avg loss=2.253923, avg quantization error=0.015053.
2022-03-07 21:59:57,856 begin to evaluate model.
2022-03-07 22:01:13,583 compute mAP.
2022-03-07 22:01:30,936 val mAP=0.594408.
2022-03-07 22:01:30,937 save the best model, db_codes and db_targets.
2022-03-07 22:01:33,553 finish saving.
2022-03-07 22:01:55,190 epoch 9: avg loss=2.259105, avg quantization error=0.014848.
2022-03-07 22:01:55,191 begin to evaluate model.
2022-03-07 22:03:11,214 compute mAP.
2022-03-07 22:03:28,428 val mAP=0.596424.
2022-03-07 22:03:28,429 save the best model, db_codes and db_targets.
2022-03-07 22:03:30,974 finish saving.
2022-03-07 22:03:51,743 epoch 10: avg loss=2.202210, avg quantization error=0.015043.
2022-03-07 22:03:51,745 begin to evaluate model.
2022-03-07 22:05:08,453 compute mAP.
2022-03-07 22:05:25,967 val mAP=0.593790.
2022-03-07 22:05:25,968 the monitor loses its patience to 9!.
2022-03-07 22:05:46,859 epoch 11: avg loss=2.139205, avg quantization error=0.014865.
2022-03-07 22:05:46,860 begin to evaluate model.
2022-03-07 22:07:02,508 compute mAP.
2022-03-07 22:07:19,914 val mAP=0.602218.
2022-03-07 22:07:19,915 save the best model, db_codes and db_targets.
2022-03-07 22:07:22,564 finish saving.
2022-03-07 22:07:43,537 epoch 12: avg loss=2.106568, avg quantization error=0.014904.
2022-03-07 22:07:43,537 begin to evaluate model.
2022-03-07 22:08:59,957 compute mAP.
2022-03-07 22:09:16,735 val mAP=0.599649.
2022-03-07 22:09:16,735 the monitor loses its patience to 9!.
2022-03-07 22:09:38,576 epoch 13: avg loss=2.061913, avg quantization error=0.014829.
2022-03-07 22:09:38,576 begin to evaluate model.
2022-03-07 22:10:55,698 compute mAP.
2022-03-07 22:11:12,763 val mAP=0.602006.
2022-03-07 22:11:12,764 the monitor loses its patience to 8!.
2022-03-07 22:11:34,630 epoch 14: avg loss=2.037777, avg quantization error=0.014829.
2022-03-07 22:11:34,631 begin to evaluate model.
2022-03-07 22:12:49,508 compute mAP.
2022-03-07 22:13:06,608 val mAP=0.603227.
2022-03-07 22:13:06,609 save the best model, db_codes and db_targets.
2022-03-07 22:13:09,172 finish saving.
2022-03-07 22:13:30,655 epoch 15: avg loss=4.363676, avg quantization error=0.015123.
2022-03-07 22:13:30,656 begin to evaluate model.
2022-03-07 22:14:46,522 compute mAP.
2022-03-07 22:15:03,418 val mAP=0.602791.
2022-03-07 22:15:03,418 the monitor loses its patience to 9!.
2022-03-07 22:15:25,241 epoch 16: avg loss=4.332609, avg quantization error=0.015068.
2022-03-07 22:15:25,241 begin to evaluate model.
2022-03-07 22:16:40,473 compute mAP.
2022-03-07 22:16:57,897 val mAP=0.604059.
2022-03-07 22:16:57,898 save the best model, db_codes and db_targets.
2022-03-07 22:17:02,378 finish saving.
2022-03-07 22:17:23,342 epoch 17: avg loss=4.314008, avg quantization error=0.015070.
2022-03-07 22:17:23,343 begin to evaluate model.
2022-03-07 22:18:39,055 compute mAP.
2022-03-07 22:18:56,798 val mAP=0.609738.
2022-03-07 22:18:56,799 save the best model, db_codes and db_targets.
2022-03-07 22:18:59,322 finish saving.
2022-03-07 22:19:20,734 epoch 18: avg loss=4.292591, avg quantization error=0.015176.
2022-03-07 22:19:20,734 begin to evaluate model.
2022-03-07 22:20:36,282 compute mAP.
2022-03-07 22:20:53,814 val mAP=0.606266.
2022-03-07 22:20:53,815 the monitor loses its patience to 9!.
2022-03-07 22:21:15,318 epoch 19: avg loss=4.276662, avg quantization error=0.015376.
2022-03-07 22:21:15,318 begin to evaluate model.
2022-03-07 22:22:31,920 compute mAP.
2022-03-07 22:22:49,658 val mAP=0.608043.
2022-03-07 22:22:49,659 the monitor loses its patience to 8!.
2022-03-07 22:23:10,846 epoch 20: avg loss=4.290248, avg quantization error=0.015230.
2022-03-07 22:23:10,846 begin to evaluate model.
2022-03-07 22:24:27,246 compute mAP.
2022-03-07 22:24:45,042 val mAP=0.606568.
2022-03-07 22:24:45,043 the monitor loses its patience to 7!.
2022-03-07 22:25:05,901 epoch 21: avg loss=4.291010, avg quantization error=0.015300.
2022-03-07 22:25:05,902 begin to evaluate model.
2022-03-07 22:26:21,509 compute mAP.
2022-03-07 22:26:39,189 val mAP=0.607111.
2022-03-07 22:26:39,189 the monitor loses its patience to 6!.
2022-03-07 22:27:00,178 epoch 22: avg loss=4.280690, avg quantization error=0.015536.
2022-03-07 22:27:00,179 begin to evaluate model.
2022-03-07 22:28:15,512 compute mAP.
2022-03-07 22:28:32,836 val mAP=0.606917.
2022-03-07 22:28:32,838 the monitor loses its patience to 5!.
2022-03-07 22:28:54,350 epoch 23: avg loss=4.256904, avg quantization error=0.015340.
2022-03-07 22:28:54,352 begin to evaluate model.
2022-03-07 22:30:10,374 compute mAP.
2022-03-07 22:30:27,901 val mAP=0.606067.
2022-03-07 22:30:27,904 the monitor loses its patience to 4!.
2022-03-07 22:30:49,820 epoch 24: avg loss=4.248620, avg quantization error=0.015351.
2022-03-07 22:30:49,821 begin to evaluate model.
2022-03-07 22:32:05,641 compute mAP.
2022-03-07 22:32:22,711 val mAP=0.611758.
2022-03-07 22:32:22,712 save the best model, db_codes and db_targets.
2022-03-07 22:32:25,286 finish saving.
2022-03-07 22:32:46,458 epoch 25: avg loss=4.240185, avg quantization error=0.015329.
2022-03-07 22:32:46,458 begin to evaluate model.
2022-03-07 22:34:02,714 compute mAP.
2022-03-07 22:34:20,162 val mAP=0.613250.
2022-03-07 22:34:20,162 save the best model, db_codes and db_targets.
2022-03-07 22:34:22,814 finish saving.
2022-03-07 22:34:44,129 epoch 26: avg loss=4.252956, avg quantization error=0.015325.
2022-03-07 22:34:44,129 begin to evaluate model.
2022-03-07 22:36:01,150 compute mAP.
2022-03-07 22:36:18,428 val mAP=0.612273.
2022-03-07 22:36:18,429 the monitor loses its patience to 9!.
2022-03-07 22:36:39,866 epoch 27: avg loss=4.225904, avg quantization error=0.015411.
2022-03-07 22:36:39,866 begin to evaluate model.
2022-03-07 22:37:56,749 compute mAP.
2022-03-07 22:38:13,831 val mAP=0.617667.
2022-03-07 22:38:13,832 save the best model, db_codes and db_targets.
2022-03-07 22:38:16,376 finish saving.
2022-03-07 22:38:38,113 epoch 28: avg loss=4.222061, avg quantization error=0.015400.
2022-03-07 22:38:38,113 begin to evaluate model.
2022-03-07 22:39:52,829 compute mAP.
2022-03-07 22:40:10,387 val mAP=0.615531.
2022-03-07 22:40:10,388 the monitor loses its patience to 9!.
2022-03-07 22:40:31,557 epoch 29: avg loss=4.217087, avg quantization error=0.015321.
2022-03-07 22:40:31,558 begin to evaluate model.
2022-03-07 22:41:48,025 compute mAP.
2022-03-07 22:42:05,239 val mAP=0.619585.
2022-03-07 22:42:05,240 save the best model, db_codes and db_targets.
2022-03-07 22:42:08,511 finish saving.
2022-03-07 22:42:29,604 epoch 30: avg loss=4.220634, avg quantization error=0.015380.
2022-03-07 22:42:29,604 begin to evaluate model.
2022-03-07 22:43:44,959 compute mAP.
2022-03-07 22:44:02,098 val mAP=0.619696.
2022-03-07 22:44:02,099 save the best model, db_codes and db_targets.
2022-03-07 22:44:04,725 finish saving.
2022-03-07 22:44:26,190 epoch 31: avg loss=4.207351, avg quantization error=0.015316.
2022-03-07 22:44:26,191 begin to evaluate model.
2022-03-07 22:45:40,833 compute mAP.
2022-03-07 22:45:57,850 val mAP=0.621005.
2022-03-07 22:45:57,851 save the best model, db_codes and db_targets.
2022-03-07 22:46:16,403 finish saving.
2022-03-07 22:46:37,474 epoch 32: avg loss=4.222591, avg quantization error=0.015326.
2022-03-07 22:46:37,474 begin to evaluate model.
2022-03-07 22:47:53,128 compute mAP.
2022-03-07 22:48:10,550 val mAP=0.621795.
2022-03-07 22:48:10,551 save the best model, db_codes and db_targets.
2022-03-07 22:48:13,288 finish saving.
2022-03-07 22:48:35,100 epoch 33: avg loss=4.193303, avg quantization error=0.015375.
2022-03-07 22:48:35,101 begin to evaluate model.
2022-03-07 22:49:49,528 compute mAP.
2022-03-07 22:50:07,191 val mAP=0.620625.
2022-03-07 22:50:07,192 the monitor loses its patience to 9!.
2022-03-07 22:50:28,006 epoch 34: avg loss=4.196375, avg quantization error=0.015351.
2022-03-07 22:50:28,006 begin to evaluate model.
2022-03-07 22:51:44,952 compute mAP.
2022-03-07 22:52:02,239 val mAP=0.620053.
2022-03-07 22:52:02,240 the monitor loses its patience to 8!.
2022-03-07 22:52:23,718 epoch 35: avg loss=4.193597, avg quantization error=0.015243.
2022-03-07 22:52:23,719 begin to evaluate model.
2022-03-07 22:53:40,967 compute mAP.
2022-03-07 22:53:58,413 val mAP=0.618726.
2022-03-07 22:53:58,413 the monitor loses its patience to 7!.
2022-03-07 22:54:19,669 epoch 36: avg loss=4.185015, avg quantization error=0.015410.
2022-03-07 22:54:19,670 begin to evaluate model.
2022-03-07 22:55:34,681 compute mAP.
2022-03-07 22:55:52,118 val mAP=0.622377.
2022-03-07 22:55:52,119 save the best model, db_codes and db_targets.
2022-03-07 22:55:54,739 finish saving.
2022-03-07 22:56:16,238 epoch 37: avg loss=4.175928, avg quantization error=0.015364.
2022-03-07 22:56:16,239 begin to evaluate model.
2022-03-07 22:57:32,283 compute mAP.
2022-03-07 22:57:49,806 val mAP=0.621164.
2022-03-07 22:57:49,807 the monitor loses its patience to 9!.
2022-03-07 22:58:11,357 epoch 38: avg loss=4.186193, avg quantization error=0.015372.
2022-03-07 22:58:11,357 begin to evaluate model.
2022-03-07 22:59:27,445 compute mAP.
2022-03-07 22:59:44,651 val mAP=0.621982.
2022-03-07 22:59:44,651 the monitor loses its patience to 8!.
2022-03-07 23:00:06,215 epoch 39: avg loss=4.165717, avg quantization error=0.015352.
2022-03-07 23:00:06,215 begin to evaluate model.
2022-03-07 23:01:21,954 compute mAP.
2022-03-07 23:01:39,580 val mAP=0.623715.
2022-03-07 23:01:39,581 save the best model, db_codes and db_targets.
2022-03-07 23:01:42,146 finish saving.
2022-03-07 23:02:04,106 epoch 40: avg loss=4.155042, avg quantization error=0.015343.
2022-03-07 23:02:04,106 begin to evaluate model.
2022-03-07 23:03:21,309 compute mAP.
2022-03-07 23:03:38,408 val mAP=0.622877.
2022-03-07 23:03:38,409 the monitor loses its patience to 9!.
2022-03-07 23:03:59,592 epoch 41: avg loss=4.172553, avg quantization error=0.015343.
2022-03-07 23:03:59,593 begin to evaluate model.
2022-03-07 23:05:15,258 compute mAP.
2022-03-07 23:05:33,200 val mAP=0.623298.
2022-03-07 23:05:33,201 the monitor loses its patience to 8!.
2022-03-07 23:05:54,778 epoch 42: avg loss=4.163091, avg quantization error=0.015340.
2022-03-07 23:05:54,778 begin to evaluate model.
2022-03-07 23:07:10,462 compute mAP.
2022-03-07 23:07:27,694 val mAP=0.623505.
2022-03-07 23:07:27,695 the monitor loses its patience to 7!.
2022-03-07 23:07:49,625 epoch 43: avg loss=4.148011, avg quantization error=0.015330.
2022-03-07 23:07:49,625 begin to evaluate model.
2022-03-07 23:09:05,120 compute mAP.
2022-03-07 23:09:22,517 val mAP=0.624884.
2022-03-07 23:09:22,518 save the best model, db_codes and db_targets.
2022-03-07 23:09:25,150 finish saving.
2022-03-07 23:09:46,421 epoch 44: avg loss=4.168090, avg quantization error=0.015334.
2022-03-07 23:09:46,422 begin to evaluate model.
2022-03-07 23:11:02,428 compute mAP.
2022-03-07 23:11:19,490 val mAP=0.625201.
2022-03-07 23:11:19,491 save the best model, db_codes and db_targets.
2022-03-07 23:11:22,269 finish saving.
2022-03-07 23:11:43,529 epoch 45: avg loss=4.148290, avg quantization error=0.015296.
2022-03-07 23:11:43,530 begin to evaluate model.
2022-03-07 23:12:58,220 compute mAP.
2022-03-07 23:13:15,576 val mAP=0.624644.
2022-03-07 23:13:15,577 the monitor loses its patience to 9!.
2022-03-07 23:13:36,807 epoch 46: avg loss=4.149807, avg quantization error=0.015343.
2022-03-07 23:13:36,808 begin to evaluate model.
2022-03-07 23:14:53,330 compute mAP.
2022-03-07 23:15:10,902 val mAP=0.625119.
2022-03-07 23:15:10,902 the monitor loses its patience to 8!.
2022-03-07 23:15:32,426 epoch 47: avg loss=4.160675, avg quantization error=0.015311.
2022-03-07 23:15:32,427 begin to evaluate model.
2022-03-07 23:16:47,448 compute mAP.
2022-03-07 23:17:04,452 val mAP=0.625369.
2022-03-07 23:17:04,452 save the best model, db_codes and db_targets.
2022-03-07 23:17:07,142 finish saving.
2022-03-07 23:17:28,309 epoch 48: avg loss=4.168533, avg quantization error=0.015336.
2022-03-07 23:17:28,309 begin to evaluate model.
2022-03-07 23:18:44,405 compute mAP.
2022-03-07 23:19:02,182 val mAP=0.625272.
2022-03-07 23:19:02,183 the monitor loses its patience to 9!.
2022-03-07 23:19:23,793 epoch 49: avg loss=4.155617, avg quantization error=0.015310.
2022-03-07 23:19:23,794 begin to evaluate model.
2022-03-07 23:20:39,288 compute mAP.
2022-03-07 23:20:56,635 val mAP=0.625350.
2022-03-07 23:20:56,635 the monitor loses its patience to 8!.
2022-03-07 23:20:56,636 free the queue memory.
2022-03-07 23:20:56,636 finish trainning at epoch 49.
2022-03-07 23:20:56,638 finish training, now load the best model and codes.
2022-03-07 23:20:57,819 begin to test model.
2022-03-07 23:20:57,820 compute mAP.
2022-03-07 23:21:15,357 test mAP=0.625369.
2022-03-07 23:21:15,357 compute PR curve and P@top1000 curve.
2022-03-07 23:21:50,429 finish testing.
2022-03-07 23:21:50,430 finish all procedures.