-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCifarII64bits.log
executable file
·294 lines (294 loc) · 16.1 KB
/
CifarII64bits.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
2022-03-07 21:45:57,194 config: Namespace(K=256, M=8, T=0.35, alpha=10, batch_size=128, checkpoint_root='./checkpoints/CifarII64bits', dataset='CIFAR10', device='cuda:0', download_cifar10=False, epoch_num=50, eval_interval=1, feat_dim=96, final_lr=1e-05, hp_beta=0.01, hp_gamma=0.5, hp_lambda=0.05, is_asym_dist=True, lr=0.01, lr_scaling=0.001, mode='debias', momentum=0.9, monitor_counter=10, notes='CifarII64bits', num_workers=20, optimizer='SGD', pos_prior=0.1, protocal='II', queue_begin_epoch=15, seed=2021, start_lr=1e-05, topK=1000, trainable_layer_num=2, use_scheduler=True, use_writer=True, vgg_model_path='vgg16.pth', warmup_epoch_num=1).
2022-03-07 21:45:57,194 prepare CIFAR10 datatset.
2022-03-07 21:45:59,113 setup model.
2022-03-07 21:46:33,814 define loss function.
2022-03-07 21:46:33,814 setup SGD optimizer.
2022-03-07 21:46:33,816 prepare monitor and evaluator.
2022-03-07 21:46:33,816 begin to train model.
2022-03-07 21:46:33,817 register queue.
2022-03-07 21:46:55,034 epoch 0: avg loss=4.484770, avg quantization error=0.019147.
2022-03-07 21:46:55,044 begin to evaluate model.
2022-03-07 21:48:10,141 compute mAP.
2022-03-07 21:48:27,353 val mAP=0.543575.
2022-03-07 21:48:27,354 save the best model, db_codes and db_targets.
2022-03-07 21:48:29,922 finish saving.
2022-03-07 21:48:51,202 epoch 1: avg loss=3.241441, avg quantization error=0.016308.
2022-03-07 21:48:51,202 begin to evaluate model.
2022-03-07 21:50:06,537 compute mAP.
2022-03-07 21:50:23,811 val mAP=0.574699.
2022-03-07 21:50:23,812 save the best model, db_codes and db_targets.
2022-03-07 21:50:26,323 finish saving.
2022-03-07 21:50:47,333 epoch 2: avg loss=2.908885, avg quantization error=0.015766.
2022-03-07 21:50:47,334 begin to evaluate model.
2022-03-07 21:52:03,053 compute mAP.
2022-03-07 21:52:19,946 val mAP=0.586018.
2022-03-07 21:52:19,947 save the best model, db_codes and db_targets.
2022-03-07 21:52:22,449 finish saving.
2022-03-07 21:52:43,586 epoch 3: avg loss=2.770873, avg quantization error=0.015523.
2022-03-07 21:52:43,587 begin to evaluate model.
2022-03-07 21:53:58,043 compute mAP.
2022-03-07 21:54:15,490 val mAP=0.591031.
2022-03-07 21:54:15,491 save the best model, db_codes and db_targets.
2022-03-07 21:54:17,903 finish saving.
2022-03-07 21:54:38,862 epoch 4: avg loss=2.626001, avg quantization error=0.015367.
2022-03-07 21:54:38,863 begin to evaluate model.
2022-03-07 21:55:53,733 compute mAP.
2022-03-07 21:56:10,940 val mAP=0.602874.
2022-03-07 21:56:10,940 save the best model, db_codes and db_targets.
2022-03-07 21:56:13,581 finish saving.
2022-03-07 21:56:34,357 epoch 5: avg loss=2.516963, avg quantization error=0.015322.
2022-03-07 21:56:34,358 begin to evaluate model.
2022-03-07 21:57:50,269 compute mAP.
2022-03-07 21:58:07,540 val mAP=0.606956.
2022-03-07 21:58:07,541 save the best model, db_codes and db_targets.
2022-03-07 21:58:10,095 finish saving.
2022-03-07 21:58:31,157 epoch 6: avg loss=2.422874, avg quantization error=0.015209.
2022-03-07 21:58:31,157 begin to evaluate model.
2022-03-07 21:59:45,743 compute mAP.
2022-03-07 22:00:03,013 val mAP=0.613314.
2022-03-07 22:00:03,014 save the best model, db_codes and db_targets.
2022-03-07 22:00:05,438 finish saving.
2022-03-07 22:00:26,519 epoch 7: avg loss=2.339408, avg quantization error=0.015218.
2022-03-07 22:00:26,519 begin to evaluate model.
2022-03-07 22:01:43,972 compute mAP.
2022-03-07 22:02:00,908 val mAP=0.616518.
2022-03-07 22:02:00,909 save the best model, db_codes and db_targets.
2022-03-07 22:02:03,581 finish saving.
2022-03-07 22:02:25,075 epoch 8: avg loss=2.333446, avg quantization error=0.015078.
2022-03-07 22:02:25,076 begin to evaluate model.
2022-03-07 22:03:40,811 compute mAP.
2022-03-07 22:03:58,047 val mAP=0.619459.
2022-03-07 22:03:58,122 save the best model, db_codes and db_targets.
2022-03-07 22:04:00,786 finish saving.
2022-03-07 22:04:21,089 epoch 9: avg loss=2.271980, avg quantization error=0.015022.
2022-03-07 22:04:21,090 begin to evaluate model.
2022-03-07 22:05:36,231 compute mAP.
2022-03-07 22:05:53,117 val mAP=0.626423.
2022-03-07 22:05:53,118 save the best model, db_codes and db_targets.
2022-03-07 22:06:02,456 finish saving.
2022-03-07 22:06:23,956 epoch 10: avg loss=2.222231, avg quantization error=0.015031.
2022-03-07 22:06:23,957 begin to evaluate model.
2022-03-07 22:07:40,368 compute mAP.
2022-03-07 22:07:57,555 val mAP=0.627940.
2022-03-07 22:07:57,556 save the best model, db_codes and db_targets.
2022-03-07 22:08:00,140 finish saving.
2022-03-07 22:08:21,188 epoch 11: avg loss=2.169518, avg quantization error=0.015055.
2022-03-07 22:08:21,189 begin to evaluate model.
2022-03-07 22:09:36,850 compute mAP.
2022-03-07 22:09:54,045 val mAP=0.629796.
2022-03-07 22:09:54,046 save the best model, db_codes and db_targets.
2022-03-07 22:09:56,596 finish saving.
2022-03-07 22:10:17,500 epoch 12: avg loss=2.108857, avg quantization error=0.015006.
2022-03-07 22:10:17,500 begin to evaluate model.
2022-03-07 22:11:33,492 compute mAP.
2022-03-07 22:11:51,065 val mAP=0.631096.
2022-03-07 22:11:51,066 save the best model, db_codes and db_targets.
2022-03-07 22:11:53,590 finish saving.
2022-03-07 22:12:14,304 epoch 13: avg loss=2.086497, avg quantization error=0.015085.
2022-03-07 22:12:14,304 begin to evaluate model.
2022-03-07 22:13:30,588 compute mAP.
2022-03-07 22:13:48,400 val mAP=0.626989.
2022-03-07 22:13:48,401 the monitor loses its patience to 9!.
2022-03-07 22:14:08,624 epoch 14: avg loss=2.064402, avg quantization error=0.015133.
2022-03-07 22:14:08,624 begin to evaluate model.
2022-03-07 22:15:22,417 compute mAP.
2022-03-07 22:15:39,709 val mAP=0.632453.
2022-03-07 22:15:39,709 save the best model, db_codes and db_targets.
2022-03-07 22:15:42,290 finish saving.
2022-03-07 22:16:03,399 epoch 15: avg loss=5.504965, avg quantization error=0.015637.
2022-03-07 22:16:03,400 begin to evaluate model.
2022-03-07 22:17:19,361 compute mAP.
2022-03-07 22:17:36,748 val mAP=0.626924.
2022-03-07 22:17:36,749 the monitor loses its patience to 9!.
2022-03-07 22:17:57,811 epoch 16: avg loss=5.373732, avg quantization error=0.015930.
2022-03-07 22:17:57,812 begin to evaluate model.
2022-03-07 22:19:12,165 compute mAP.
2022-03-07 22:19:29,915 val mAP=0.631213.
2022-03-07 22:19:29,916 the monitor loses its patience to 8!.
2022-03-07 22:19:50,748 epoch 17: avg loss=5.290972, avg quantization error=0.016007.
2022-03-07 22:19:50,749 begin to evaluate model.
2022-03-07 22:21:06,885 compute mAP.
2022-03-07 22:21:24,320 val mAP=0.634358.
2022-03-07 22:21:24,321 save the best model, db_codes and db_targets.
2022-03-07 22:21:27,126 finish saving.
2022-03-07 22:21:47,311 epoch 18: avg loss=5.259967, avg quantization error=0.016014.
2022-03-07 22:21:47,311 begin to evaluate model.
2022-03-07 22:23:04,626 compute mAP.
2022-03-07 22:23:21,607 val mAP=0.635428.
2022-03-07 22:23:21,608 save the best model, db_codes and db_targets.
2022-03-07 22:23:24,434 finish saving.
2022-03-07 22:23:44,142 epoch 19: avg loss=5.212812, avg quantization error=0.016023.
2022-03-07 22:23:44,142 begin to evaluate model.
2022-03-07 22:25:00,077 compute mAP.
2022-03-07 22:25:17,879 val mAP=0.634854.
2022-03-07 22:25:17,880 the monitor loses its patience to 9!.
2022-03-07 22:25:38,159 epoch 20: avg loss=5.183519, avg quantization error=0.016042.
2022-03-07 22:25:38,160 begin to evaluate model.
2022-03-07 22:26:55,679 compute mAP.
2022-03-07 22:27:13,675 val mAP=0.635037.
2022-03-07 22:27:13,675 the monitor loses its patience to 8!.
2022-03-07 22:27:34,044 epoch 21: avg loss=5.155954, avg quantization error=0.016069.
2022-03-07 22:27:34,044 begin to evaluate model.
2022-03-07 22:28:50,888 compute mAP.
2022-03-07 22:29:07,990 val mAP=0.635410.
2022-03-07 22:29:07,991 the monitor loses its patience to 7!.
2022-03-07 22:29:28,222 epoch 22: avg loss=5.161678, avg quantization error=0.016006.
2022-03-07 22:29:28,223 begin to evaluate model.
2022-03-07 22:30:44,618 compute mAP.
2022-03-07 22:31:02,383 val mAP=0.635853.
2022-03-07 22:31:02,385 save the best model, db_codes and db_targets.
2022-03-07 22:31:05,094 finish saving.
2022-03-07 22:31:24,819 epoch 23: avg loss=5.151512, avg quantization error=0.016027.
2022-03-07 22:31:24,820 begin to evaluate model.
2022-03-07 22:32:40,345 compute mAP.
2022-03-07 22:32:57,287 val mAP=0.636645.
2022-03-07 22:32:57,288 save the best model, db_codes and db_targets.
2022-03-07 22:33:00,218 finish saving.
2022-03-07 22:33:21,526 epoch 24: avg loss=5.110520, avg quantization error=0.016035.
2022-03-07 22:33:21,527 begin to evaluate model.
2022-03-07 22:34:36,687 compute mAP.
2022-03-07 22:34:53,914 val mAP=0.631508.
2022-03-07 22:34:53,915 the monitor loses its patience to 9!.
2022-03-07 22:35:14,608 epoch 25: avg loss=5.117172, avg quantization error=0.016042.
2022-03-07 22:35:14,608 begin to evaluate model.
2022-03-07 22:36:29,507 compute mAP.
2022-03-07 22:36:46,481 val mAP=0.639601.
2022-03-07 22:36:46,482 save the best model, db_codes and db_targets.
2022-03-07 22:36:49,158 finish saving.
2022-03-07 22:37:10,390 epoch 26: avg loss=5.077461, avg quantization error=0.016017.
2022-03-07 22:37:10,391 begin to evaluate model.
2022-03-07 22:38:25,648 compute mAP.
2022-03-07 22:38:42,848 val mAP=0.638433.
2022-03-07 22:38:42,849 the monitor loses its patience to 9!.
2022-03-07 22:39:03,319 epoch 27: avg loss=5.054093, avg quantization error=0.016069.
2022-03-07 22:39:03,319 begin to evaluate model.
2022-03-07 22:40:17,457 compute mAP.
2022-03-07 22:40:35,113 val mAP=0.637517.
2022-03-07 22:40:35,114 the monitor loses its patience to 8!.
2022-03-07 22:40:55,715 epoch 28: avg loss=5.040066, avg quantization error=0.016050.
2022-03-07 22:40:55,716 begin to evaluate model.
2022-03-07 22:42:11,399 compute mAP.
2022-03-07 22:42:28,584 val mAP=0.640887.
2022-03-07 22:42:28,585 save the best model, db_codes and db_targets.
2022-03-07 22:42:31,087 finish saving.
2022-03-07 22:42:50,953 epoch 29: avg loss=5.044623, avg quantization error=0.016074.
2022-03-07 22:42:50,954 begin to evaluate model.
2022-03-07 22:44:06,821 compute mAP.
2022-03-07 22:44:23,774 val mAP=0.640570.
2022-03-07 22:44:23,774 the monitor loses its patience to 9!.
2022-03-07 22:44:44,393 epoch 30: avg loss=5.025953, avg quantization error=0.016000.
2022-03-07 22:44:44,394 begin to evaluate model.
2022-03-07 22:45:59,245 compute mAP.
2022-03-07 22:46:16,701 val mAP=0.642600.
2022-03-07 22:46:16,701 save the best model, db_codes and db_targets.
2022-03-07 22:46:19,260 finish saving.
2022-03-07 22:46:41,214 epoch 31: avg loss=5.020064, avg quantization error=0.015996.
2022-03-07 22:46:41,214 begin to evaluate model.
2022-03-07 22:47:55,439 compute mAP.
2022-03-07 22:48:13,194 val mAP=0.644533.
2022-03-07 22:48:13,194 save the best model, db_codes and db_targets.
2022-03-07 22:48:16,057 finish saving.
2022-03-07 22:48:36,950 epoch 32: avg loss=5.002213, avg quantization error=0.015964.
2022-03-07 22:48:36,950 begin to evaluate model.
2022-03-07 22:49:52,194 compute mAP.
2022-03-07 22:50:09,784 val mAP=0.643043.
2022-03-07 22:50:09,785 the monitor loses its patience to 9!.
2022-03-07 22:50:30,840 epoch 33: avg loss=4.990812, avg quantization error=0.015939.
2022-03-07 22:50:30,841 begin to evaluate model.
2022-03-07 22:51:47,307 compute mAP.
2022-03-07 22:52:04,722 val mAP=0.644794.
2022-03-07 22:52:04,723 save the best model, db_codes and db_targets.
2022-03-07 22:52:07,546 finish saving.
2022-03-07 22:52:27,661 epoch 34: avg loss=4.986398, avg quantization error=0.015947.
2022-03-07 22:52:27,662 begin to evaluate model.
2022-03-07 22:53:43,235 compute mAP.
2022-03-07 22:54:01,192 val mAP=0.641834.
2022-03-07 22:54:01,193 the monitor loses its patience to 9!.
2022-03-07 22:54:21,183 epoch 35: avg loss=4.979271, avg quantization error=0.015976.
2022-03-07 22:54:21,183 begin to evaluate model.
2022-03-07 22:55:36,844 compute mAP.
2022-03-07 22:55:53,946 val mAP=0.642503.
2022-03-07 22:55:53,947 the monitor loses its patience to 8!.
2022-03-07 22:56:13,442 epoch 36: avg loss=4.974538, avg quantization error=0.015974.
2022-03-07 22:56:13,443 begin to evaluate model.
2022-03-07 22:57:28,262 compute mAP.
2022-03-07 22:57:45,595 val mAP=0.644511.
2022-03-07 22:57:45,596 the monitor loses its patience to 7!.
2022-03-07 22:58:06,539 epoch 37: avg loss=4.963844, avg quantization error=0.015984.
2022-03-07 22:58:06,540 begin to evaluate model.
2022-03-07 22:59:22,691 compute mAP.
2022-03-07 22:59:40,684 val mAP=0.643768.
2022-03-07 22:59:40,684 the monitor loses its patience to 6!.
2022-03-07 23:00:01,170 epoch 38: avg loss=4.951956, avg quantization error=0.015930.
2022-03-07 23:00:01,170 begin to evaluate model.
2022-03-07 23:01:17,393 compute mAP.
2022-03-07 23:01:35,040 val mAP=0.644715.
2022-03-07 23:01:35,041 the monitor loses its patience to 5!.
2022-03-07 23:01:55,772 epoch 39: avg loss=4.956523, avg quantization error=0.015947.
2022-03-07 23:01:55,772 begin to evaluate model.
2022-03-07 23:03:11,928 compute mAP.
2022-03-07 23:03:29,482 val mAP=0.644508.
2022-03-07 23:03:29,483 the monitor loses its patience to 4!.
2022-03-07 23:03:49,646 epoch 40: avg loss=4.945196, avg quantization error=0.015965.
2022-03-07 23:03:49,647 begin to evaluate model.
2022-03-07 23:05:06,509 compute mAP.
2022-03-07 23:05:23,876 val mAP=0.644871.
2022-03-07 23:05:23,876 save the best model, db_codes and db_targets.
2022-03-07 23:05:26,774 finish saving.
2022-03-07 23:05:46,709 epoch 41: avg loss=4.937703, avg quantization error=0.015925.
2022-03-07 23:05:46,709 begin to evaluate model.
2022-03-07 23:07:02,122 compute mAP.
2022-03-07 23:07:20,049 val mAP=0.645807.
2022-03-07 23:07:20,049 save the best model, db_codes and db_targets.
2022-03-07 23:07:22,667 finish saving.
2022-03-07 23:07:42,976 epoch 42: avg loss=4.931114, avg quantization error=0.015951.
2022-03-07 23:07:42,976 begin to evaluate model.
2022-03-07 23:08:58,234 compute mAP.
2022-03-07 23:09:15,754 val mAP=0.646258.
2022-03-07 23:09:15,755 save the best model, db_codes and db_targets.
2022-03-07 23:09:18,629 finish saving.
2022-03-07 23:09:38,800 epoch 43: avg loss=4.931296, avg quantization error=0.015917.
2022-03-07 23:09:38,800 begin to evaluate model.
2022-03-07 23:10:54,087 compute mAP.
2022-03-07 23:11:11,356 val mAP=0.646805.
2022-03-07 23:11:11,357 save the best model, db_codes and db_targets.
2022-03-07 23:11:14,254 finish saving.
2022-03-07 23:11:33,935 epoch 44: avg loss=4.932503, avg quantization error=0.015916.
2022-03-07 23:11:33,936 begin to evaluate model.
2022-03-07 23:12:50,558 compute mAP.
2022-03-07 23:13:07,859 val mAP=0.646348.
2022-03-07 23:13:07,860 the monitor loses its patience to 9!.
2022-03-07 23:13:27,866 epoch 45: avg loss=4.923044, avg quantization error=0.015899.
2022-03-07 23:13:27,866 begin to evaluate model.
2022-03-07 23:14:42,868 compute mAP.
2022-03-07 23:15:00,421 val mAP=0.646389.
2022-03-07 23:15:00,422 the monitor loses its patience to 8!.
2022-03-07 23:15:21,034 epoch 46: avg loss=4.918848, avg quantization error=0.015921.
2022-03-07 23:15:21,035 begin to evaluate model.
2022-03-07 23:16:38,828 compute mAP.
2022-03-07 23:16:56,220 val mAP=0.646290.
2022-03-07 23:16:56,220 the monitor loses its patience to 7!.
2022-03-07 23:17:16,240 epoch 47: avg loss=4.926639, avg quantization error=0.015897.
2022-03-07 23:17:16,240 begin to evaluate model.
2022-03-07 23:18:32,879 compute mAP.
2022-03-07 23:18:49,787 val mAP=0.646293.
2022-03-07 23:18:49,788 the monitor loses its patience to 6!.
2022-03-07 23:19:10,314 epoch 48: avg loss=4.934542, avg quantization error=0.015930.
2022-03-07 23:19:10,314 begin to evaluate model.
2022-03-07 23:20:26,154 compute mAP.
2022-03-07 23:20:43,889 val mAP=0.646320.
2022-03-07 23:20:43,890 the monitor loses its patience to 5!.
2022-03-07 23:21:04,391 epoch 49: avg loss=4.916241, avg quantization error=0.015903.
2022-03-07 23:21:04,392 begin to evaluate model.
2022-03-07 23:22:21,233 compute mAP.
2022-03-07 23:22:38,495 val mAP=0.646340.
2022-03-07 23:22:38,496 the monitor loses its patience to 4!.
2022-03-07 23:22:38,496 free the queue memory.
2022-03-07 23:22:38,496 finish trainning at epoch 49.
2022-03-07 23:22:38,499 finish training, now load the best model and codes.
2022-03-07 23:22:40,193 begin to test model.
2022-03-07 23:22:40,193 compute mAP.
2022-03-07 23:22:57,352 test mAP=0.646805.
2022-03-07 23:22:57,352 compute PR curve and P@top1000 curve.
2022-03-07 23:23:32,816 finish testing.
2022-03-07 23:23:32,816 finish all procedures.