-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
executable file
·247 lines (226 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import random
import logging
from argparse import ArgumentParser
import numpy as np
import torch
from utils import set_logger, Monitor, Evaluator, WarmUpAndCosineDecayScheduler
from data import CIFAR10, Flickr25K, NUSWIDE
from network import MeCoQ
from loss import MeCoQLoss
from engine import train, test
def parse_args():
parser = ArgumentParser(description="Run MeCoQ")
# dataset configurations
parser.add_argument('--dataset',
type=str, default='CIFAR10',
help="Choose a dataset from 'CIFAR10', 'Flickr25K' or 'NUSWIDE'.")
parser.add_argument('--protocal',
type=str, default='I',
help="Select evaluation protocal on CIFAR10. Options: 'I' or 'II'.")
parser.add_argument('--download_cifar10',
dest='download_cifar10', action='store_true',
help='Download CIFAR-10 via torchvision or not.')
parser.set_defaults(download_cifar10=False)
parser.add_argument('--num_workers',
type=int, default=10,
help='Number of threads for data fetching.')
# optimizer configurations
parser.add_argument('--batch_size',
type=int, default=128,
help='Batch size')
parser.add_argument('--epoch_num',
type=int, default=50,
help='Number of epochs.')
parser.add_argument('--optimizer',
type=str, default='SGD',
help="The name of optimizer in 'torch.optim'.")
parser.add_argument('--lr',
type=float, default=0.01,
help='Learning rate.')
parser.add_argument('--lr_scaling',
type=float, default=1e-3,
help='Learning rate scaling for CNN layers.')
parser.add_argument('--momentum',
type=float, default=0.9,
help='Learning rate.')
parser.add_argument('--hp_beta',
type=float, default=5e-6,
help='Weight decay factor.')
parser.add_argument('--disable_scheduler',
dest='use_scheduler', action='store_false',
help='Disabling the learning rate scheduler.')
parser.set_defaults(use_scheduler=True)
parser.add_argument('--warmup_epoch_num',
type=int, default=1,
help='Number of warmup epochs for lr scheduler.')
parser.add_argument('--start_lr',
type=float, default=1e-5,
help='Learning rate at the start of warmup.')
parser.add_argument('--final_lr',
type=float, default=1e-5,
help='Final learning rate of cosine decaying schedule.')
# quantization configurations
parser.add_argument('--feat_dim',
type=int, default=64,
help='Dimension of image features.')
parser.add_argument('--M',
type=int, default=4,
help='Number of codebooks.')
parser.add_argument('--K',
type=int, default=256,
help='Number of sub-codewords per sub-codebook.')
parser.add_argument('--alpha',
type=float, default=10,
help='Alpha scaling parameter for soft codeword assignment.')
parser.add_argument('--trainable_layer_num',
type=int, default=0,
help='The number of trainable layers for VGG-16 backbone. Options: 0, 1 or 2.')
parser.add_argument('--vgg_model_path',
type=str, default=None,
help='The path of pretrained VGG-16 model weights. If not declared, it will download the weights from TorchVision')
# contrastive learning configurations
parser.add_argument('--T',
type=float, default=0.1,
help='Temperature parameter for nce loss.')
parser.add_argument('--mode',
type=str, default='simple',
help="Loss mode of contrastive learning. Options: 'simple', 'debias'.")
parser.add_argument('--pos_prior',
type=float, default=0,
help='Class prior of positive samples among the dataset.')
parser.add_argument('--hp_lambda',
type=float, default=1,
help='Weight for entropy regularization loss.')
parser.add_argument('--hp_gamma',
type=float, default=0.5,
help='Weight for codebook regularization loss.')
# memory queue configurations
parser.add_argument('--queue_begin_epoch',
type=int, default=np.inf,
help='The epoch for starting using memory queue.')
# evaluation configurations
parser.add_argument('--symmetric_distance',
dest='is_asym_dist', action='store_false',
help='Declare this option to use symmetric quantization distance, otherwise to use asymmetric quantization distance.')
parser.set_defaults(is_asym_dist=True)
parser.add_argument('--topK',
type=int, default=None,
help='TopK for metric evaluation')
parser.add_argument('--eval_interval',
type=int, default=1,
help='Interval for evaluation (in epoch).')
parser.add_argument('--monitor_counter',
type=int, default=10,
help='The maximum patience for metric monitor.')
# other configurations
parser.add_argument('--device',
type=str, default='cpu',
help="Device: 'cpu', 'cuda:X'")
parser.add_argument('--seed',
type=int, default=2021,
help='Random seed.')
parser.add_argument('--notes',
type=str, default="",
help="Notes and remarks for current experiment.")
parser.add_argument('--disable_writer',
dest='use_writer', action='store_false',
help='Disabling tensorboard summary writer.')
parser.set_defaults(use_writer=True)
return parser.parse_args()
if __name__ == '__main__':
torch.autograd.set_detect_anomaly(True)
config = parse_args()
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
writer = set_logger(config)
logging.info("config: " + str(config))
logging.info("prepare %s datatset" % config.dataset)
if config.dataset == 'CIFAR10':
datahub = CIFAR10(root='./datasets/CIFAR-10/',
protocal=config.protocal,
download=config.download_cifar10,
batch_size=config.batch_size,
num_workers=config.num_workers)
elif config.dataset == 'Flickr25K':
datahub = Flickr25K(root="./data/Flickr25k/",
img_root="./datasets/Flickr25K/mirflickr/",
batch_size=config.batch_size,
num_workers=config.num_workers)
elif config.dataset == 'NUSWIDE':
datahub = NUSWIDE(root="./data/Nuswide/",
img_root="./datasets/NUS-WIDE/Flickr/",
batch_size=config.batch_size,
num_workers=config.num_workers)
else:
raise ValueError("Unknown dataset '%s'." % config.dataset)
logging.info("setup model")
model = MeCoQ(feat_dim=config.feat_dim,
M=config.M, K=config.K, alpha=config.alpha,
trainable_layer_num=config.trainable_layer_num,
CNN_model_path=config.vgg_model_path)
model = model.to(config.device)
logging.info("define loss function")
loss_fn = MeCoQLoss(T=config.T,
mode=config.mode,
pos_prior=config.pos_prior,
hp_lambda=config.hp_lambda,
hp_gamma=config.hp_gamma,
device=config.device)
logging.info("setup %s optimizer" % config.optimizer)
if config.optimizer == 'SGD':
params = [
{'params': model.vgg.parameters(), 'lr': config.lr * config.lr_scaling},
{'params': model.projection.parameters(), 'lr': config.lr},
{'params': model.pq_layer.parameters(), 'lr': config.lr}
]
optimizer = torch.optim.SGD(params,
lr=config.lr,
momentum=config.momentum,
weight_decay=config.hp_beta)
else:
params = [
{'params': model.vgg.parameters(), 'lr': config.lr * config.lr_scaling},
{'params': model.projection.parameters(), 'lr': config.lr},
{'params': model.pq_layer.parameters(), 'lr': config.lr}
]
optimizer = getattr(torch.optim, config.optimizer)(params,
lr=config.lr,
weight_decay=config.hp_beta)
logging.info("prepare monitor and evaluator")
monitor = Monitor(max_patience=config.monitor_counter)
evaluator = Evaluator(feat_dim=config.feat_dim,
M=config.M, K=config.K,
is_asym_dist=config.is_asym_dist,
device=config.device)
lr_scheduler = WarmUpAndCosineDecayScheduler(optimizer=optimizer,
start_lr=config.start_lr,
base_lr=config.lr,
final_lr=config.final_lr,
epoch_num=config.epoch_num,
batch_num_per_epoch=len(datahub.train_loader),
warmup_epoch_num=config.warmup_epoch_num) if config.use_scheduler else None
logging.info("begin to train model")
train(datahub=datahub,
model=model,
loss_fn=loss_fn,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
config=config,
evaluator=evaluator,
monitor=monitor,
writer=writer)
# Load best checkpoint
logging.info("finish training, now load the best model and codes")
model.load_state_dict(torch.load(os.path.join(config.checkpoint_root, 'model.cpt')))
evaluator.set_codebooks(codebooks=model.codebooks)
evaluator.set_db_codes(db_code_file=os.path.join(config.checkpoint_root, 'db_codes.npy'))
evaluator.set_db_targets(db_target_file=os.path.join(config.checkpoint_root, 'db_targets.npy'))
logging.info("begin to test model")
test(datahub=datahub,
model=model,
config=config,
evaluator=evaluator,
writer=writer)
logging.info("finish all procedures")