-
Notifications
You must be signed in to change notification settings - Fork 1
/
data_config.py
704 lines (530 loc) · 19.1 KB
/
data_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
from utils.config import Config
class NPM3DConfig(Config):
"""Override the parameters you want to modify for this dataset."""
use_potential = False
if use_potential:
# only necessary for potential sampling
class_w = [1, 1, 1, 1, 5, 5, 1, 5, 1, 1]
loss_type = 'Dice_Focal'
world_size = 2
####################
# Dataset parameters
####################
# Dataset name
dataset = 'NPM3D'
# Number of classes in the dataset
# (This value is overwritten by dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 4
#########################
# Architecture definition
#########################
# # Define layers
architecture = []
use_multi_layer = True
use_resnetb = False
###################
# KPConv parameters
###################
# Radius of the input sphere
in_radius = 4.0
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.08
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell".
# Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell".
# (1.0 is the standard value)
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 64
in_features_dim = 1 # 1 by default, 3 include color
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
deform_fitting_mode = 'point2point'
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 600
# Learning rate management
base_learning_rate = 1e-2
learning_rate = base_learning_rate * world_size
momentum = 0.98
lr_decays = {i: 0.1**(1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 2
# Number of steps per epochs
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_noise = 0.01
augment_color = 1.0
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted
# according to class balance)
# > 'batch': Each cloud in the batch has the same contribution
# (points are weighted according cloud sizes)
segloss_balance = 'none'
# Do we nee to save convergence
saving = True
saving_path = './result/npm3d_kpconv_plus_nie_allTrain_DiceFocal_lr0p02'
# for temporary subdata
subdata_path = 'data'
# for data path
data_path = '../Data/npm3d'
debug = False
if debug:
print('debug mode on ')
epoch_step = 10
num_epoch = 2
class S3DISConfig(Config):
"""Override the parameters you want to modify for this dataset."""
use_potential = False
if use_potential:
# only necessary for potential sampling
class_w = [1, 1, 1, 1, 5, 5, 1, 5, 1, 1]
world_size = 4
####################
# Dataset parameters
####################
# Dataset name
dataset = 'S3DIS'
validation_split = 4
# Number of classes in the dataset (This value is overwritten by
# dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 4
loss_type = 'CE'
#########################
# Architecture definition
#########################
# # Define layers
architecture = []
use_multi_layer = True
use_resnetb = False
###################
# KPConv parameters
###################
# tf version is heavy: 1/2,1/2,2; pytorch version is light: 1/4, 1/4, 1
resblock = 'light'
# Radius of the input sphere
in_radius = 1.5
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.04
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell".
# Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in
# "number grid cell". (1.0 is the standard value)
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 64 if resblock == 'heavy' else 128
in_features_dim = 5
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
deform_fitting_mode = 'point2point'
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 500
# Learning rate management
base_learning_rate = 1e-2
learning_rate = base_learning_rate * world_size
momentum = 0.98
lr_decays = {i: 0.1**(1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 8 if resblock == 'heavy' else 3
# Number of steps per epochs
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 0.8
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted
# according to class balance)
# > 'batch': Each cloud in the batch has the same contribution
# (points are weighted according cloud sizes)
segloss_balance = 'none'
# Do we nee to save convergence
saving = True
saving_path = 'result/kpocnv_lr0p01_area{}'.format(validation_split)
class Semantic3DConfig(Config):
"""Override the parameters you want to modify for this dataset."""
use_potential = False
if use_potential:
# only necessary for potential sampling
class_w = [1, 1, 1, 1, 5, 5, 1, 5, 1, 1]
world_size = 4
####################
# Dataset parameters
####################
# Dataset name
dataset = 'Semantic3D'
# Number of classes in the dataset (This value is overwritten by dataset
# class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 4
loss_type = 'CE'
#########################
# Architecture definition
#########################
# # Define layers
architecture = []
use_multi_layer = True
use_resnetb = False
###################
# KPConv parameters
###################
# KPConv specific parameters
num_kernel_points = 15
first_subsampling_dl = 0.06
in_radius = 3.0
# Density of neighborhoods for deformable convs (which need bigger radiuses).
# For normal conv we use KP_extent
density_parameter = 5.0
# Behavior of convolutions in ('constant', 'linear', gaussian)
KP_influence = 'linear'
KP_extent = 1.0
# Behavior of convolutions in ('closest', 'sum')
convolution_mode = 'sum'
# Can the network learn modulations
modulated = False
# Offset loss
# 'permissive' only constrains offsets inside the big radius
# 'fitting' helps deformed kernels to adapt to the geometry
# by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.1
# Choice of input features
in_features_dim = 4
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.98
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 600
# Learning rate management
base_learning_rate = 1e-2
learning_rate = base_learning_rate * world_size
momentum = 0.98
lr_decays = {i: 0.1**(1 / 100) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 8
# Number of steps per epochs (cannot be None for this dataset)
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each snapshot
snapshot_gap = 10
checkpoint_gap = 10
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_noise = 0.001
augment_occlusion = 'none'
augment_color = 1.0
# Whether to use loss averaged on all points, or averaged per batch.
batch_averaged_loss = False
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted
# according to class balance)
# > 'batch': Each cloud in the batch has the same contribution
# (points are weighted according cloud sizes)
segloss_balance = 'none'
# Do we nee to save convergence
saving = True
saving_path = 'result/semantic3d_kpocnv_bp_scale_lr0p02'
class SensatUrbanConfig(Config):
"""Override the parameters you want to modify for this dataset."""
use_potential = False
if use_potential:
# only necessary for potential sampling
class_w = [1, 1, 1, 1, 5, 5, 1, 5, 1, 1]
world_size = 4
####################
# Dataset parameters
####################
# Dataset name
dataset = 'SensatUrban'
# Number of classes in the dataset (This value is overwritten by dataset
# class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 4
#########################
# Architecture definition
#########################
# # Define layers
architecture = []
use_multi_layer = True
use_resnetb = False
###################
# KPConv parameters
###################
# Radius of the input sphere
in_radius = 10.0
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.2
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell".
# Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell".
# (1.0 is the standard value)
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 64
in_features_dim = 4 # 1 by default, 4 include color
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
deform_fitting_mode = 'point2point'
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 500
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1**(1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 4
# Number of steps per epochs
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each checkpoint
checkpoint_gap = 20
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_noise = 0.01
augment_color = 1.0
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted
# according to class balance)
# > 'batch': Each cloud in the batch has the same contribution
# (points are weighted according cloud sizes)
segloss_balance = 'none'
# Do we nee to save convergence
saving = True
saving_path = './result/debug'
# for temporary subdata
subdata_path = 'data'
# for data path
data_path = 'data'
debug = False
if debug:
print('debug mode on ')
epoch_steps = 10
num_epoch = 2
data_path = ''
input_path = ''
trainlist = ''
vallist = ''
class XMap3DConfig(Config):
"""Override the parameters you want to modify for this dataset."""
use_potential = False
if use_potential:
# only necessary for potential sampling
class_w = [1, 1, 1, 1, 5, 5, 1, 5, 1, 1]
####################
# Dataset parameters
####################
# Dataset name
dataset = 'XMap3D'
# Number of classes in the dataset (This value is overwritten by dataset
# class when Initializating dataset).
num_classes = None
loss_type = 'CE'
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 8
# define layers
architecture = []
use_multi_layer = True
use_resnetb = False
###################
# KPConv parameters
###################
# tf version is heavy: 1/2,1/2,2; pytorch version is light: 1/4, 1/4, 1
resblock = 'heavy'
# Radius of the input sphere
in_radius = 4.0
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.08
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell".
# Larger so that deformed kernel can spread out
deform_radius = 5.0
# Radius of the area of influence of each kernel point in "number grid cell".
# (1.0 is the standard value)
KP_extent = 1.0
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 64 if resblock == 'heavy' else 128
in_features_dim = 3 # 1 by default, 2 includes color, 3/4 includes color and z
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
deform_fitting_mode = 'point2point'
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 1200
# Learning rate management
world_size = 4
base_learning_rate = 1e-2
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1**(1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 6 if first_features_dim == 64 else 3
loss_type = 'CE'
# Number of steps per epochs
epoch_steps = 1200
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 0.8
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted
# according to class balance)
# > 'batch': Each cloud in the batch has the same contribution
# (points are weighted according cloud sizes)
segloss_balance = 'none'
# Do we nee to save convergence
saving = True
saving_path = './result/kp_pyramid_v1_lr0p01_xmap3d'
# for temporary subdata
subdata_path = 'data'
# for data path
data_path = 'data'
debug = False
if debug:
print('debug mode on ')
epoch_steps = 10
num_epoch = 2
# on 83
data_path = ''
input_path = ''
trainlist = ''
vallist = ''