-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain.py
240 lines (198 loc) · 9.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import torch.backends.cudnn as cudnn
import sys
import os
import argparse
import pprint
import logging
import time
import glob
import shutil
from mmcv import Config
from mmcv.runner import init_dist, get_dist_info
import architecture_code
import models
from dataset import dataset_entry
from attack import *
import utils
import lr_scheduler
Debug = True
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-c', type=str, default='./experiments/RobNet_free_cifar10/config.py',
help='location of the config file')
parser.add_argument('--distributed', action='store_true', default=False, help='Distributed training')
parser.add_argument('--eval_only', action='store_true', default=False, help='Only evaluate')
parser.set_defaults(augment=True)
args = parser.parse_args()
def main():
global cfg, rank, world_size
cfg = Config.fromfile(args.config)
# Set seed
np.random.seed(cfg.seed)
cudnn.benchmark = True
torch.manual_seed(cfg.seed)
cudnn.enabled = True
torch.cuda.manual_seed(cfg.seed)
# Model
print('==> Building model..')
arch_code = eval('architecture_code.{}'.format(cfg.model))
net = models.model_entry(cfg, arch_code)
rank = 0 # for non-distributed
world_size = 1 # for non-distributed
if args.distributed:
print('==> Initializing distributed training..')
init_dist(launcher='slurm', backend='nccl') # Only support slurm for now, if you would like to personalize your launcher, please refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py
rank, world_size = get_dist_info()
net = net.cuda()
cfg.netpara = sum(p.numel() for p in net.parameters()) / 1e6
start_epoch = 0
best_acc = 0
# Load checkpoint.
if cfg.get('resume_path', False):
print('==> Resuming from {}checkpoint {}..'.format(('original ' if cfg.resume_path.origin_ckpt else ''), cfg.resume_path.path))
if cfg.resume_path.origin_ckpt:
utils.load_state(cfg.resume_path.path, net, rank=rank)
else:
if args.distributed:
net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[torch.cuda.current_device()], output_device=torch.cuda.current_device())
utils.load_state(cfg.resume_path.path, net, rank=rank)
# Data
print('==> Preparing data..')
if args.eval_only:
testloader = dataset_entry(cfg, args.distributed, args.eval_only)
else:
trainloader, testloader, train_sampler, test_sampler = dataset_entry(cfg, args.distributed, args.eval_only)
print(trainloader, testloader, train_sampler, test_sampler)
criterion = nn.CrossEntropyLoss()
if not args.eval_only:
cfg.attack_param.num_steps = 7
net_adv = AttackPGD(net, cfg.attack_param)
if not args.eval_only:
# Train params
print('==> Setting train parameters..')
train_param = cfg.train_param
epochs = train_param.epochs
init_lr = train_param.learning_rate
if train_param.get('warm_up_param', False):
warm_up_param = train_param.warm_up_param
init_lr = warm_up_param.warm_up_base_lr
epochs += warm_up_param.warm_up_epochs
if train_param.get('no_wd', False):
param_group, type2num, _, _ = utils.param_group_no_wd(net)
cfg.param_group_no_wd = type2num
optimizer = torch.optim.SGD(param_group, lr=init_lr, momentum=train_param.momentum, weight_decay=train_param.weight_decay)
else:
optimizer = torch.optim.SGD(net.parameters(), lr=init_lr, momentum=train_param.momentum, weight_decay=train_param.weight_decay)
scheduler = lr_scheduler.CosineLRScheduler(optimizer, epochs, train_param.learning_rate_min, init_lr, train_param.learning_rate, (warm_up_param.warm_up_epochs if train_param.get('warm_up_param', False) else 0))
# Log
print('==> Writing log..')
if rank == 0:
cfg.save = '{}/{}-{}-{}'.format(cfg.save_path, cfg.model, cfg.dataset,
time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(cfg.save)
logger = utils.create_logger('global_logger', cfg.save + '/log.txt')
logger.info('config: {}'.format(pprint.pformat(cfg)))
# Evaluation only
if args.eval_only:
assert cfg.get('resume_path', False), 'Should set the resume path for the eval_only mode'
print('==> Testing on Clean Data..')
test(net, testloader, criterion)
print('==> Testing on Adversarial Data..')
test(net_adv, testloader, criterion, adv=True)
return
# Training process
for epoch in range(start_epoch, epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
test_sampler.set_epoch(epoch)
scheduler.step()
if rank == 0:
logger.info('Epoch %d learning rate %e', epoch, scheduler.get_lr()[0])
# Train for one epoch
train(net_adv, trainloader, criterion, optimizer)
# Validate for one epoch
valid_acc = test(net_adv, testloader, criterion, adv=True)
if rank == 0:
logger.info('Validation Accuracy: {}'.format(valid_acc))
is_best = valid_acc > best_acc
best_acc = max(valid_acc, best_acc)
print('==> Saving')
state = {'epoch': epoch,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'state_dict': net.state_dict(),
'scheduler': scheduler}
utils.save_checkpoint(state, is_best, os.path.join(cfg.save))
def train(net, trainloader, criterion, optimizer):
objs = utils.AverageMeter(cfg.report_freq)
top1 = utils.AverageMeter(cfg.report_freq)
top5 = utils.AverageMeter(cfg.report_freq)
logger = logging.getLogger('global_logger')
for step, (inputs, targets) in enumerate(trainloader):
net.train()
num = inputs.size(0)
inputs, targets = inputs.cuda(), targets.cuda()
logits, _ = net(inputs, targets)
loss = criterion(logits, targets)
prec1, prec5 = utils.accuracy(logits, targets, topk=(1, 5))
optimizer.zero_grad()
loss.backward()
optimizer.step()
reduced_loss = loss.clone() / world_size
reduced_prec1 = prec1.clone() / world_size
reduced_prec5 = prec5.clone() / world_size
if args.distributed:
torch.distributed.all_reduce(reduced_loss)
torch.distributed.all_reduce(reduced_prec1)
torch.distributed.all_reduce(reduced_prec5)
objs.update(reduced_loss.clone().item())
top1.update(reduced_prec1.clone().item())
top5.update(reduced_prec5.clone().item())
if step % cfg.report_freq == 0 and rank == 0:
logger.info('Iter: [{0}/{1}]\t'
'Loss: {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1: {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5: {top5.val:.3f} ({top5.avg:.3f})\t'
.format(step, len(trainloader), loss=objs, top1=top1, top5=top5))
def test(net, testloader, criterion, adv=False):
losses = utils.AverageMeter(0)
top1 = utils.AverageMeter(0)
top5 = utils.AverageMeter(0)
logger = logging.getLogger('global_logger')
net.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.cuda(), targets.cuda()
if not adv:
outputs = net(inputs)
else:
outputs, inputs_adv = net(inputs, targets)
loss = criterion(outputs, targets)
prec1, prec5 = utils.accuracy(outputs.data, targets, topk=(1, 5))
num = inputs.size(0)
losses.update(loss.clone().item(), num)
top1.update(prec1.clone().item(), num)
top5.update(prec5.clone().item(), num)
if batch_idx % cfg.report_freq == 0 and rank == 0:
logger.info(
'Test: [{0}/{1}]\t'
'Loss: {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1: {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5: {top5.val:.3f} ({top5.avg:.3f})\t'
.format(batch_idx, len(testloader), loss=losses, top1=top1, top5=top5))
final_loss_sum = torch.Tensor([losses.sum]).cuda()
final_top1_sum = torch.Tensor([top1.sum]).cuda()
final_top5_sum = torch.Tensor([top5.sum]).cuda()
total_num = torch.Tensor([losses.count]).cuda()
if args.distributed:
torch.distributed.all_reduce(final_loss_sum)
torch.distributed.all_reduce(final_top1_sum)
torch.distributed.all_reduce(final_top5_sum)
torch.distributed.all_reduce(total_num)
final_loss = final_loss_sum.item() / total_num.item()
final_top1 = final_top1_sum.item() / total_num.item()
final_top5 = final_top5_sum.item() / total_num.item()
logger.info(' * Prec@1 {:.3f}\tPrec@5 {:.3f}\tLoss {:.3f}\t'.format(final_top1, final_top5, final_loss))
return final_top1
if __name__ == '__main__':
main()