-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathutil.py
188 lines (132 loc) · 4.26 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import cv2
from numpy import math, hstack
import numpy as np
class FileVideoCapture(object):
def __init__(self, path):
self.path = path
self.frame = 1
def isOpened(self):
im = cv2.imread(self.path.format(self.frame))
return im != None
def read(self):
im = cv2.imread(self.path.format(self.frame))
status = im != None
if status:
self.frame += 1
return status, im
def squeeze_pts(X):
X = X.squeeze()
if len(X.shape) == 1:
X = np.array([X])
return X
def array_to_int_tuple(X):
return (int(X[0]), int(X[1]))
def L2norm(X):
return np.sqrt((X ** 2).sum(axis=1))
current_pos = None
tl = None
br = None
def get_rect(im, title='get_rect'):
mouse_params = {'tl': None, 'br': None, 'current_pos': None,
'released_once': False}
cv2.namedWindow(title)
cv2.moveWindow(title, 100, 100)
def onMouse(event, x, y, flags, param):
param['current_pos'] = (x, y)
if param['tl'] is not None and not (flags & cv2.EVENT_FLAG_LBUTTON):
param['released_once'] = True
if flags & cv2.EVENT_FLAG_LBUTTON:
if param['tl'] is None:
param['tl'] = param['current_pos']
elif param['released_once']:
param['br'] = param['current_pos']
cv2.setMouseCallback(title, onMouse, mouse_params)
cv2.imshow(title, im)
while mouse_params['br'] is None:
im_draw = np.copy(im)
if mouse_params['tl'] is not None:
cv2.rectangle(im_draw, mouse_params['tl'],
mouse_params['current_pos'], (255, 0, 0))
cv2.imshow(title, im_draw)
_ = cv2.waitKey(10)
cv2.destroyWindow(title)
tl = (min(mouse_params['tl'][0], mouse_params['br'][0]),
min(mouse_params['tl'][1], mouse_params['br'][1]))
br = (max(mouse_params['tl'][0], mouse_params['br'][0]),
max(mouse_params['tl'][1], mouse_params['br'][1]))
return (tl, br)
def in_rect(keypoints, tl, br):
if type(keypoints) is list:
keypoints = keypoints_cv_to_np(keypoints)
x = keypoints[:, 0]
y = keypoints[:, 1]
C1 = x > tl[0]
C2 = y > tl[1]
C3 = x < br[0]
C4 = y < br[1]
result = C1 & C2 & C3 & C4
return result
def keypoints_cv_to_np(keypoints_cv):
keypoints = np.array([k.pt for k in keypoints_cv])
return keypoints
def find_nearest_keypoints(keypoints, pos, number=1):
if type(pos) is tuple:
pos = np.array(pos)
if type(keypoints) is list:
keypoints = keypoints_cv_to_np(keypoints)
pos_to_keypoints = np.sqrt(np.power(keypoints - pos, 2).sum(axis=1))
ind = np.argsort(pos_to_keypoints)
return ind[:number]
def draw_keypoints(keypoints, im, color=(255, 0, 0)):
for k in keypoints:
radius = 3 # int(k.size / 2)
center = (int(k[0]), int(k[1]))
# Draw circle
cv2.circle(im, center, radius, color)
def track(im_prev, im_gray, keypoints, THR_FB=20):
if type(keypoints) is list:
keypoints = keypoints_cv_to_np(keypoints)
num_keypoints = keypoints.shape[0]
# Status of tracked keypoint - True means successfully tracked
status = [False] * num_keypoints
# If at least one keypoint is active
if num_keypoints > 0:
# Prepare data for opencv:
# Add singleton dimension
# Use only first and second column
# Make sure dtype is float32
pts = keypoints[:, None, :2].astype(np.float32)
# Calculate forward optical flow for prev_location
nextPts, status, _ = cv2.calcOpticalFlowPyrLK(im_prev, im_gray, pts, None)
# Calculate backward optical flow for prev_location
pts_back, _, _ = cv2.calcOpticalFlowPyrLK(im_gray, im_prev, nextPts, None)
# Remove singleton dimension
pts_back = squeeze_pts(pts_back)
pts = squeeze_pts(pts)
nextPts = squeeze_pts(nextPts)
status = status.squeeze()
# Calculate forward-backward error
fb_err = np.sqrt(np.power(pts_back - pts, 2).sum(axis=1))
# Set status depending on fb_err and lk error
large_fb = fb_err > THR_FB
status = ~large_fb & status.astype(np.bool)
nextPts = nextPts[status, :]
keypoints_tracked = keypoints[status, :]
keypoints_tracked[:, :2] = nextPts
else:
keypoints_tracked = np.array([])
return keypoints_tracked, status
def rotate(pt, rad):
if(rad == 0):
return pt
pt_rot = np.empty(pt.shape)
s, c = [f(rad) for f in (math.sin, math.cos)]
pt_rot[:, 0] = c * pt[:, 0] - s * pt[:, 1]
pt_rot[:, 1] = s * pt[:, 0] + c * pt[:, 1]
return pt_rot
def br(bbs):
result = hstack((bbs[:, [0]] + bbs[:, [2]] - 1, bbs[:, [1]] + bbs[:, [3]] - 1))
return result
def bb2pts(bbs):
pts = hstack((bbs[:, :2], br(bbs)))
return pts