-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbrain.go
504 lines (433 loc) · 14.8 KB
/
brain.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
package joe
import (
"context"
"errors"
"fmt"
"reflect"
"runtime"
"strings"
"sync"
"sync/atomic"
"time"
"go.uber.org/zap"
)
// The Brain contains the core logic of a Bot by implementing an event handling
// system that dispatches events to all registered event handlers.
type Brain struct {
logger *zap.Logger
eventsInput chan Event // input for any new events, the Brain ensures that callers never block when writing to it
eventsLoop chan Event // used in Brain.HandleEvents() to actually process the events
shutdown chan shutdownRequest
mu sync.RWMutex // mu protects concurrent access to the handlers
handlers map[reflect.Type][]eventHandler
handlerTimeout time.Duration // zero means no timeout, defaults to one minute
registrationErrs []error // any errors that occurred during setup (e.g. in Bot.RegisterHandler)
handlingEvents int32 // accessed atomically (non-zero means the event handler was started)
closed int32 // accessed atomically (non-zero means the brain was shutdown already)
}
// An Event represents a concrete event type and optional callbacks that are
// triggered when the event was processed by all registered handlers.
type Event struct {
Data interface{}
Callbacks []func(Event)
AbortEarly bool
}
// The shutdownRequest type is used when signaling shutdown information between
// Brain.Shutdown() and the Brain.HandleEvents loop.
type shutdownRequest struct {
ctx context.Context
callback chan bool
}
// An eventHandler is a function that takes a context and the reflected value
// of a concrete event type.
type eventHandler func(context.Context, reflect.Value) error
// ctxKey is used to pass meta information to event handlers via the context.
type ctxKey string
// ctxKeyEvent is the context key under which we can lookup the internal *Event
// instance in a handler.
const ctxKeyEvent ctxKey = "event"
// FinishEventContent can be called from within your event handler functions
// to indicate that the Brain should not execute any other handlers after the
// calling handler has returned.
func FinishEventContent(ctx context.Context) {
evt, _ := ctx.Value(ctxKeyEvent).(*Event)
if evt != nil {
evt.AbortEarly = true
}
}
// NewBrain creates a new robot Brain. If the passed logger is nil it will
// fallback to the zap.NewNop() logger.
func NewBrain(logger *zap.Logger) *Brain {
if logger == nil {
logger = zap.NewNop()
}
b := &Brain{
logger: logger,
eventsInput: make(chan Event),
eventsLoop: make(chan Event),
shutdown: make(chan shutdownRequest),
handlers: make(map[reflect.Type][]eventHandler),
handlerTimeout: time.Minute,
}
b.consumeEvents()
return b
}
func (b *Brain) isHandlingEvents() bool {
return atomic.LoadInt32(&b.handlingEvents) == 1
}
func (b *Brain) isClosed() bool {
return atomic.LoadInt32(&b.closed) == 1
}
// RegisterHandler registers a function to be executed when a specific event is
// fired. The function signature must comply with the following rules or the bot
// that uses this Brain will return an error on its next Bot.Run() call:
//
// Allowed function signatures:
//
// // AnyType can be any scalar, struct or interface type as long as it is not
// // a pointer.
// func(AnyType)
//
// // You can optionally accept a context as the first argument. The context
// // is used to signal handler timeouts or when the bot is shutting down.
// func(context.Context, AnyType)
//
// // You can optionally return a single error value. Returning any other type
// // or returning more than one value is not possible. If the handler
// // returns an error it will be logged.
// func(AnyType) error
//
// // Event handlers can also accept an interface in which case they will be
// // be called for all events which implement the interface. Consequently,
// // you can register a function which accepts the empty interface which will
// // will receive all emitted events. Such event handlers can optionally also
// // accept a context and/or return an error like other handlers.
// func(context.Context, interface{}) error
//
// The event, that will be dispatched to the passed handler function, corresponds
// directly to the accepted function argument. For instance if you want to emit
// and receive a custom event you can implement it like this:
//
// type CustomEvent struct {}
//
// b := NewBrain(nil)
// b.RegisterHandler(func(evt CustomEvent) {
// …
// })
//
// If multiple handlers are registered for the same event type, then they are
// all executed in the order in which they have been registered.
//
// You should register all handlers before you start the bot via Bot.Run(…).
// While registering handlers later is also possible, any registration errors
// will silently be ignored if you register an invalid handler when the bot is
// already running.
func (b *Brain) RegisterHandler(fun interface{}) {
err := b.registerHandler(fun)
if err != nil {
caller := firstExternalCaller()
err = fmt.Errorf("%s: %w", caller, err)
b.registrationErrs = append(b.registrationErrs, err)
}
}
func (b *Brain) registerHandler(fun interface{}) error {
handler := reflect.ValueOf(fun)
handlerType := handler.Type()
if handlerType.Kind() != reflect.Func {
return errors.New("event handler is no function")
}
evtType, withContext, err := checkHandlerParams(handlerType)
if err != nil {
return err
}
returnsErr, err := checkHandlerReturnValues(handlerType)
if err != nil {
return err
}
b.logger.Debug("Registering new event handler",
zap.Stringer("event_type", evtType),
)
handlerFun := newHandlerFunc(handler, withContext, returnsErr)
b.mu.Lock()
b.handlers[evtType] = append(b.handlers[evtType], handlerFun)
b.mu.Unlock()
return nil
}
// Emit sends the first argument as event to the brain from where it is
// dispatched to all registered handlers. The events are dispatched
// asynchronously but in the same order in which they are send to this function.
// Emit does not block until the event is delivered to the registered event
// handlers. If you want to wait until all handlers have processed the event you
// can pass one or more callback functions that will be executed when all
// handlers finished execution of this event.
func (b *Brain) Emit(event interface{}, callbacks ...func(Event)) {
if b.isClosed() {
b.logger.Debug(
"Ignoring new event because brain is currently shutting down or is already closed",
zap.String("type", fmt.Sprintf("%T", event)),
)
return
}
b.eventsInput <- Event{Data: event, Callbacks: callbacks}
}
// HandleEvents starts the event handling loop of the Brain.
// This function blocks until Brain.Shutdown() is called and returned.
func (b *Brain) HandleEvents() {
if b.isClosed() {
b.logger.Error("HandleEvents failed because bot is already closed")
return
}
ctx := context.Background()
var shutdown shutdownRequest // set when Brain.Shutdown() is called
atomic.StoreInt32(&b.handlingEvents, 1)
b.handleEvent(ctx, Event{Data: InitEvent{}})
for {
select {
case evt, ok := <-b.eventsLoop:
if !ok {
// Brain.consumeEvents() is done processing all remaining events
// and we can now safely shutdown the event handler, knowing that
// all pending events have been processed.
b.handleEvent(ctx, Event{Data: ShutdownEvent{}})
shutdown.callback <- true
return
}
b.handleEvent(ctx, evt)
case shutdown = <-b.shutdown:
// The Brain is shutting down. We have to close the input channel so
// we doe no longer accept new events and only process the remaining
// pending events. When the goroutine of Brain.consumeEvents() is
// done it will close the events loop channel and the case above will
// use the shutdown callback and return from this function.
ctx = shutdown.ctx
close(b.eventsInput)
atomic.StoreInt32(&b.handlingEvents, 0)
}
}
}
// consumeEvents continuously reads events from b.eventsInput in a new goroutine
// so emitting an event never blocks on the caller. All events will be returned
// in the result channel of this function in the same order in which they have
// been inserted into b.events. In this sense this function provides an events
// channel with "infinite" capacity. The spawned goroutine stops when the
// b.eventsInput channel is closed.
func (b *Brain) consumeEvents() {
var queue []Event
b.eventsLoop = make(chan Event)
outChan := func() chan Event {
if len(queue) == 0 {
// In case the queue is empty we return a nil channel to disable the
// corresponding select case in the goroutine below.
return nil
}
return b.eventsLoop
}
nextEvt := func() Event {
if len(queue) == 0 {
// Prevent index out of bounds if there is no next event. Note that
// this event is actually never received because the outChan()
// function above will return "nil" in this case which disables the
// corresponding select case.
return Event{}
}
return queue[0]
}
go func() {
for {
select {
case evt, ok := <-b.eventsInput:
if !ok {
// Events input channel was closed because Brain is shutting
// down. Emit all pending events from the queue and then close
// the events loop channel so Brain.HandleEvents() can exit.
for _, evt := range queue {
b.eventsLoop <- evt
}
close(b.eventsLoop)
return
}
queue = append(queue, evt)
case outChan() <- nextEvt(): // disabled if len(queue) == 0
queue = queue[1:]
}
}
}()
}
// handleEvent receives an event and dispatches it to all registered handlers
// using the reflect API. When all applicable handlers are called (maybe none)
// the function runs all event callbacks.
func (b *Brain) handleEvent(ctx context.Context, evt Event) {
event := reflect.ValueOf(evt.Data)
typ := event.Type()
handlers := b.determineHandlers(typ)
b.logger.Debug("Handling new event",
zap.Stringer("event_type", typ),
zap.Int("handlers", len(handlers)),
)
ctx = context.WithValue(ctx, ctxKeyEvent, &evt)
for _, handler := range handlers {
err := b.executeEventHandler(ctx, handler, event)
if err != nil {
b.logger.Error("Event handler failed",
// TODO: somehow log the name of the handler
zap.Error(err),
)
}
if evt.AbortEarly {
// Abort handler execution early instead of running any more
// handlers. The event state may have been changed by a handler, e.g.
// using the FinishEventContent(…) function.
break
}
}
for _, callback := range evt.Callbacks {
callback(evt)
}
}
func (b *Brain) determineHandlers(evtType reflect.Type) []eventHandler {
b.mu.RLock()
defer b.mu.RUnlock()
var handlers []eventHandler
for handlerType, hh := range b.handlers {
if handlerType == evtType {
handlers = append(handlers, hh...)
}
if handlerType.Kind() == reflect.Interface && evtType.Implements(handlerType) {
handlers = append(handlers, hh...)
}
}
return handlers
}
func (b *Brain) executeEventHandler(ctx context.Context, handler eventHandler, event reflect.Value) error {
if b.handlerTimeout > 0 {
var cancel func()
ctx, cancel = context.WithTimeout(ctx, b.handlerTimeout)
defer cancel()
}
done := make(chan error)
go func() {
done <- handler(ctx, event)
}()
select {
case err := <-done:
return err
case <-ctx.Done():
return ctx.Err()
}
}
// Shutdown stops the event handler loop of the Brain and waits until all pending
// events have been processed. After the brain is shutdown, it will no longer
// accept new events. The passed context can be used to stop waiting for any
// pending events or handlers and instead exit immediately (e.g. after a timeout
// or a second SIGTERM).
func (b *Brain) Shutdown(ctx context.Context) {
closing := atomic.CompareAndSwapInt32(&b.closed, 0, 1)
if !closing {
// brain is already shutting down
return
}
if !b.isHandlingEvents() {
// If the event handler loop is not running we must close the inputs
// channel from here and drain all pending requests in order to make
// b.consumeEvents() exit.
close(b.eventsInput)
for {
select {
case _, ok := <-b.eventsLoop:
if !ok {
// The eventsLoop channel is closed in b.consumeEvents after
// all pending messages have been written to it.
return
}
case <-ctx.Done():
// shutdown context is expired so we return without waiting for
// any pending events.
return
}
}
}
// If we got here then the event handler loop is running and we delegate
// proper cleanup and processing of pending messages over there.
req := shutdownRequest{
ctx: ctx,
callback: make(chan bool),
}
b.shutdown <- req
<-req.callback
}
func checkHandlerParams(handlerFunc reflect.Type) (evtType reflect.Type, withContext bool, err error) {
numParams := handlerFunc.NumIn()
if numParams == 0 || numParams > 2 {
err = errors.New("event handler needs one or two arguments")
return
}
evtType = handlerFunc.In(numParams - 1) // last argument must be the event
withContext = numParams == 2
if withContext {
contextInterface := reflect.TypeOf((*context.Context)(nil)).Elem()
if handlerFunc.In(1).Implements(contextInterface) {
err = errors.New("event handler context must be the first argument")
return
}
if !handlerFunc.In(0).Implements(contextInterface) {
err = errors.New("event handler has two arguments but the first is not a context.Context")
return
}
}
if evtType.Kind() == reflect.Ptr {
err = errors.New("event handler argument cannot be a pointer")
return
}
return evtType, withContext, nil
}
func checkHandlerReturnValues(handlerFunc reflect.Type) (returnsError bool, err error) {
switch handlerFunc.NumOut() {
case 0:
return false, nil
case 1:
errorInterface := reflect.TypeOf((*error)(nil)).Elem()
if !handlerFunc.Out(0).Implements(errorInterface) {
err = errors.New("if the event handler has a return value it must implement the error interface")
return
}
return true, nil
default:
return false, fmt.Errorf("event handler has more than one return value")
}
}
func newHandlerFunc(handler reflect.Value, withContext, returnsErr bool) eventHandler {
return func(ctx context.Context, evt reflect.Value) (handlerErr error) {
defer func() {
if err := recover(); err != nil {
handlerErr = fmt.Errorf("handler panic: %v", err)
}
}()
var args []reflect.Value
if withContext {
args = []reflect.Value{
reflect.ValueOf(ctx),
evt,
}
} else {
args = []reflect.Value{evt}
}
results := handler.Call(args)
if returnsErr && !results[0].IsNil() {
return results[0].Interface().(error)
}
return nil
}
}
func firstExternalCaller() string {
const depth = 32
var pcs [depth]uintptr
n := runtime.Callers(3, pcs[:])
callers := pcs[0:n]
frames := runtime.CallersFrames(callers)
for frame, more := frames.Next(); more; frame, more = frames.Next() {
if !strings.HasPrefix(frame.Function, "github.com/go-joe/joe.") {
return fmt.Sprintf("%s:%d", frame.File, frame.Line)
}
}
return "unknown caller"
}