-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
73 lines (43 loc) · 3.33 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
def get_GNB_parameters(dataset):
parser = argparse.ArgumentParser(description='GNB')
# --------------------------------------------------------------
if dataset == "weibo":
parser.add_argument('--dataset', default='weibo', type=str, help='mnist_only, yelp, movie_real, shuttle')
#
parser.add_argument('--GNN_lr', default=0.0001, type=float, help='Learning rates for GNN models')
parser.add_argument('--user_lr', default=0.0001, type=float, help='Learning rates for GNN models')
parser.add_argument('--bw_reward', default=5, type=float, help='Kernel bandwidth for exploitation GNN')
parser.add_argument('--bw_conf_b', default=5, type=float, help='Kernel bandwidth for exploration GNN')
parser.add_argument('--k', default=1, type=int, help='k-th user neighborhood over user graphs')
parser.add_argument('--batch_size', default=-1, type=int, help='Batch size for training')
parser.add_argument('--GNN_pool_step_size', default=10000, type=int, help='Step size for GNN gradient pooling')
parser.add_argument('--user_pool_step_size', default=1000, type=int, help='Step size for user gradient pooling')
parser.add_argument('--arti_explore_constant', default=0.01, type=float, help='Artificial exploration constant')
parser.add_argument('--train_every_user_model', default=True, type=bool, help='Train every user model')
parser.add_argument('--explore_param', default=1, type=float, help='Exploration parameter')
#
parser.add_argument('--separate_explore_GNN', default=False, type=bool,
help='Matrix embedding for GNN exploration')
elif dataset == "twitter":
parser.add_argument('--dataset', default='twitter', type=str, help='weibo, twitter')
#
parser.add_argument('--GNN_lr', default=0.0001, type=float, help='Learning rates for GNN models')
parser.add_argument('--user_lr', default=0.0001, type=float, help='Learning rates for GNN models')
parser.add_argument('--bw_reward', default=5, type=float, help='Kernel bandwidth for exploitation GNN')
parser.add_argument('--bw_conf_b', default=5, type=float, help='Kernel bandwidth for exploration GNN')
parser.add_argument('--k', default=1, type=int, help='k-th user neighborhood over user graphs')
parser.add_argument('--batch_size', default=-1, type=int, help='Batch size for training')
parser.add_argument('--GNN_pool_step_size', default=1000, type=int, help='Step size for GNN gradient pooling')
parser.add_argument('--user_pool_step_size', default=100, type=int, help='Step size for user gradient pooling')
parser.add_argument('--arti_explore_constant', default=0.1, type=float, help='Artificial exploration constant')
parser.add_argument('--train_every_user_model', default=True, type=bool, help='Train every user model')
parser.add_argument('--explore_param', default=1, type=float, help='Exploration parameter')
#
parser.add_argument('--separate_explore_GNN', default=False, type=bool,
help='Matrix embedding for GNN exploration')
else:
print("Undefined data set")
return None
print(parser)
return parser