This repository has been archived by the owner on Dec 10, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
floats.go
763 lines (698 loc) · 19.1 KB
/
floats.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
// Copyright 2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file
// Package floats provides a set of helper routines for dealing with slices
// of float64. The functions avoid allocations to allow for use within tight
// loops without garbage collection overhead.
//
// The convention used is that when a slice is being modified in place, it has
// the name dst.
package floats
import (
"errors"
"math"
"sort"
"github.com/gonum/internal/asm/f64"
)
// Add adds, element-wise, the elements of s and dst, and stores in dst.
// Panics if the lengths of dst and s do not match.
func Add(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: length of the slices do not match")
}
f64.AxpyUnitaryTo(dst, 1, s, dst)
}
// AddTo adds, element-wise, the elements of s and t and
// stores the result in dst. Panics if the lengths of s, t and dst do not match.
func AddTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic("floats: length of adders do not match")
}
if len(dst) != len(s) {
panic("floats: length of destination does not match length of adder")
}
f64.AxpyUnitaryTo(dst, 1, s, t)
return dst
}
// AddConst adds the scalar c to all of the values in dst.
func AddConst(c float64, dst []float64) {
for i := range dst {
dst[i] += c
}
}
// AddScaled performs dst = dst + alpha * s.
// It panics if the lengths of dst and s are not equal.
func AddScaled(dst []float64, alpha float64, s []float64) {
if len(dst) != len(s) {
panic("floats: length of destination and source to not match")
}
f64.AxpyUnitaryTo(dst, alpha, s, dst)
}
// AddScaledTo performs dst = y + alpha * s, where alpha is a scalar,
// and dst, y and s are all slices.
// It panics if the lengths of dst, y, and s are not equal.
//
// At the return of the function, dst[i] = y[i] + alpha * s[i]
func AddScaledTo(dst, y []float64, alpha float64, s []float64) []float64 {
if len(dst) != len(s) || len(dst) != len(y) {
panic("floats: lengths of slices do not match")
}
f64.AxpyUnitaryTo(dst, alpha, s, y)
return dst
}
// argsort is a helper that implements sort.Interface, as used by
// Argsort.
type argsort struct {
s []float64
inds []int
}
func (a argsort) Len() int {
return len(a.s)
}
func (a argsort) Less(i, j int) bool {
return a.s[i] < a.s[j]
}
func (a argsort) Swap(i, j int) {
a.s[i], a.s[j] = a.s[j], a.s[i]
a.inds[i], a.inds[j] = a.inds[j], a.inds[i]
}
// Argsort sorts the elements of s while tracking their original order.
// At the conclusion of Argsort, s will contain the original elements of s
// but sorted in increasing order, and inds will contain the original position
// of the elements in the slice such that dst[i] = origDst[inds[i]].
// It panics if the lengths of dst and inds do not match.
func Argsort(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic("floats: length of inds does not match length of slice")
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Sort(a)
}
// Count applies the function f to every element of s and returns the number
// of times the function returned true.
func Count(f func(float64) bool, s []float64) int {
var n int
for _, val := range s {
if f(val) {
n++
}
}
return n
}
// CumProd finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination dst. A panic will occur if the lengths of arguments
// do not match.
//
// At the return of the function, dst[i] = s[i] * s[i-1] * s[i-2] * ...
func CumProd(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: length of destination does not match length of the source")
}
if len(dst) == 0 {
return dst
}
return f64.CumProd(dst, s)
}
// CumSum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination dst. A panic will occur if the lengths of arguments
// do not match.
//
// At the return of the function, dst[i] = s[i] + s[i-1] + s[i-2] + ...
func CumSum(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: length of destination does not match length of the source")
}
if len(dst) == 0 {
return dst
}
return f64.CumSum(dst, s)
}
// Distance computes the L-norm of s - t. See Norm for special cases.
// A panic will occur if the lengths of s and t do not match.
func Distance(s, t []float64, L float64) float64 {
if len(s) != len(t) {
panic("floats: slice lengths do not match")
}
if len(s) == 0 {
return 0
}
var norm float64
if L == 2 {
for i, v := range s {
diff := t[i] - v
norm = math.Hypot(norm, diff)
}
return norm
}
if L == 1 {
for i, v := range s {
norm += math.Abs(t[i] - v)
}
return norm
}
if math.IsInf(L, 1) {
for i, v := range s {
absDiff := math.Abs(t[i] - v)
if absDiff > norm {
norm = absDiff
}
}
return norm
}
for i, v := range s {
norm += math.Pow(math.Abs(t[i]-v), L)
}
return math.Pow(norm, 1/L)
}
// Div performs element-wise division dst / s
// and stores the value in dst. It panics if the
// lengths of s and t are not equal.
func Div(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: slice lengths do not match")
}
f64.Div(dst, s)
}
// DivTo performs element-wise division s / t
// and stores the value in dst. It panics if the
// lengths of s, t, and dst are not equal.
func DivTo(dst, s, t []float64) []float64 {
if len(s) != len(t) || len(dst) != len(t) {
panic("floats: slice lengths do not match")
}
return f64.DivTo(dst, s, t)
}
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[i]*s2[i].
// A panic will occur if lengths of arguments do not match.
func Dot(s1, s2 []float64) float64 {
if len(s1) != len(s2) {
panic("floats: lengths of the slices do not match")
}
return f64.DotUnitary(s1, s2)
}
// Equal returns true if the slices have equal lengths and
// all elements are numerically identical.
func Equal(s1, s2 []float64) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if s2[i] != val {
return false
}
}
return true
}
// EqualApprox returns true if the slices have equal lengths and
// all element pairs have an absolute tolerance less than tol or a
// relative tolerance less than tol.
func EqualApprox(s1, s2 []float64, tol float64) bool {
if len(s1) != len(s2) {
return false
}
for i, a := range s1 {
if !EqualWithinAbsOrRel(a, s2[i], tol, tol) {
return false
}
}
return true
}
// EqualFunc returns true if the slices have the same lengths
// and the function returns true for all element pairs.
func EqualFunc(s1, s2 []float64, f func(float64, float64) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if !f(val, s2[i]) {
return false
}
}
return true
}
// EqualWithinAbs returns true if a and b have an absolute
// difference of less than tol.
func EqualWithinAbs(a, b, tol float64) bool {
return a == b || math.Abs(a-b) <= tol
}
const minNormalFloat64 = 2.2250738585072014e-308
// EqualWithinRel returns true if the difference between a and b
// is not greater than tol times the greater value.
func EqualWithinRel(a, b, tol float64) bool {
if a == b {
return true
}
delta := math.Abs(a - b)
if delta <= minNormalFloat64 {
return delta <= tol*minNormalFloat64
}
// We depend on the division in this relationship to identify
// infinities (we rely on the NaN to fail the test) otherwise
// we compare Infs of the same sign and evaluate Infs as equal
// independent of sign.
return delta/math.Max(math.Abs(a), math.Abs(b)) <= tol
}
// EqualWithinAbsOrRel returns true if a and b are equal to within
// the absolute tolerance.
func EqualWithinAbsOrRel(a, b, absTol, relTol float64) bool {
if EqualWithinAbs(a, b, absTol) {
return true
}
return EqualWithinRel(a, b, relTol)
}
// EqualWithinULP returns true if a and b are equal to within
// the specified number of floating point units in the last place.
func EqualWithinULP(a, b float64, ulp uint) bool {
if a == b {
return true
}
if math.IsNaN(a) || math.IsNaN(b) {
return false
}
if math.Signbit(a) != math.Signbit(b) {
return math.Float64bits(math.Abs(a))+math.Float64bits(math.Abs(b)) <= uint64(ulp)
}
return ulpDiff(math.Float64bits(a), math.Float64bits(b)) <= uint64(ulp)
}
func ulpDiff(a, b uint64) uint64 {
if a > b {
return a - b
}
return b - a
}
// EqualLengths returns true if all of the slices have equal length,
// and false otherwise. Returns true if there are no input slices.
func EqualLengths(slices ...[]float64) bool {
// This length check is needed: http://play.golang.org/p/sdty6YiLhM
if len(slices) == 0 {
return true
}
l := len(slices[0])
for i := 1; i < len(slices); i++ {
if len(slices[i]) != l {
return false
}
}
return true
}
// Find applies f to every element of s and returns the indices of the first
// k elements for which the f returns true, or all such elements
// if k < 0.
// Find will reslice inds to have 0 length, and will append
// found indices to inds.
// If k > 0 and there are fewer than k elements in s satisfying f,
// all of the found elements will be returned along with an error.
// At the return of the function, the input inds will be in an undetermined state.
func Find(inds []int, f func(float64) bool, s []float64, k int) ([]int, error) {
// inds is also returned to allow for calling with nil
// Reslice inds to have zero length
inds = inds[:0]
// If zero elements requested, can just return
if k == 0 {
return inds, nil
}
// If k < 0, return all of the found indices
if k < 0 {
for i, val := range s {
if f(val) {
inds = append(inds, i)
}
}
return inds, nil
}
// Otherwise, find the first k elements
nFound := 0
for i, val := range s {
if f(val) {
inds = append(inds, i)
nFound++
if nFound == k {
return inds, nil
}
}
}
// Finished iterating over the loop, which means k elements were not found
return inds, errors.New("floats: insufficient elements found")
}
// HasNaN returns true if the slice s has any values that are NaN and false
// otherwise.
func HasNaN(s []float64) bool {
for _, v := range s {
if math.IsNaN(v) {
return true
}
}
return false
}
// LogSpan returns a set of n equally spaced points in log space between,
// l and u where N is equal to len(dst). The first element of the
// resulting dst will be l and the final element of dst will be u.
// Panics if len(dst) < 2
// Note that this call will return NaNs if either l or u are negative, and
// will return all zeros if l or u is zero.
// Also returns the mutated slice dst, so that it can be used in range, like:
//
// for i, x := range LogSpan(dst, l, u) { ... }
func LogSpan(dst []float64, l, u float64) []float64 {
Span(dst, math.Log(l), math.Log(u))
for i := range dst {
dst[i] = math.Exp(dst[i])
}
return dst
}
// LogSumExp returns the log of the sum of the exponentials of the values in s.
// Panics if s is an empty slice.
func LogSumExp(s []float64) float64 {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
// First, find the maximum value in the slice.
maxval := Max(s)
if math.IsInf(maxval, 0) {
// If it's infinity either way, the logsumexp will be infinity as well
// returning now avoids NaNs
return maxval
}
var lse float64
// Compute the sumexp part
for _, val := range s {
lse += math.Exp(val - maxval)
}
// Take the log and add back on the constant taken out
return math.Log(lse) + maxval
}
// Max returns the maximum value in the input slice. If the slice is empty, Max will panic.
func Max(s []float64) float64 {
return s[MaxIdx(s)]
}
// MaxIdx returns the index of the maximum value in the input slice. If several
// entries have the maximum value, the first such index is returned. If the slice
// is empty, MaxIdx will panic.
func MaxIdx(s []float64) int {
if len(s) == 0 {
panic("floats: zero slice length")
}
max := s[0]
var ind int
for i, v := range s {
if v > max {
max = v
ind = i
}
}
return ind
}
// Min returns the maximum value in the input slice. If the slice is empty, Min will panic.
func Min(s []float64) float64 {
return s[MinIdx(s)]
}
// MinIdx returns the index of the minimum value in the input slice. If several
// entries have the maximum value, the first such index is returned. If the slice
// is empty, MinIdx will panic.
func MinIdx(s []float64) int {
min := s[0]
var ind int
for i, v := range s {
if v < min {
min = v
ind = i
}
}
return ind
}
// Mul performs element-wise multiplication between dst
// and s and stores the value in dst. Panics if the
// lengths of s and t are not equal.
func Mul(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: slice lengths do not match")
}
for i, val := range s {
dst[i] *= val
}
}
// MulTo performs element-wise multiplication between s
// and t and stores the value in dst. Panics if the
// lengths of s, t, and dst are not equal.
func MulTo(dst, s, t []float64) []float64 {
if len(s) != len(t) || len(dst) != len(t) {
panic("floats: slice lengths do not match")
}
for i, val := range t {
dst[i] = val * s[i]
}
return dst
}
// Nearest returns the index of the element in s
// whose value is nearest to v. If several such
// elements exist, the lowest index is returned.
// Panics if len(s) == 0.
func Nearest(s []float64, v float64) int {
var ind int
dist := math.Abs(v - s[0])
for i, val := range s {
newDist := math.Abs(v - val)
if newDist < dist {
dist = newDist
ind = i
}
}
return ind
}
// NearestWithinSpan return the index of a hypothetical vector created
// by Span with length n and bounds l and u whose value is closest
// to v. NearestWithinSpan panics if u < l. If the value is greater than u or
// less than l, the function returns -1.
func NearestWithinSpan(n int, l, u float64, v float64) int {
if u < l {
panic("floats: upper bound greater than lower bound")
}
if v < l || v > u {
return -1
}
// Can't guarantee anything about exactly halfway between
// because of floating point weirdness.
return int((float64(n)-1)/(u-l)*(v-l) + 0.5)
}
// Norm returns the L norm of the slice S, defined as
// (sum_{i=1}^N s[i]^L)^{1/L}
// Special cases:
// L = math.Inf(1) gives the maximum absolute value.
// Does not correctly compute the zero norm (use Count).
func Norm(s []float64, L float64) float64 {
// Should this complain if L is not positive?
// Should this be done in log space for better numerical stability?
// would be more cost
// maybe only if L is high?
if len(s) == 0 {
return 0
}
if L == 2 {
twoNorm := math.Abs(s[0])
for i := 1; i < len(s); i++ {
twoNorm = math.Hypot(twoNorm, s[i])
}
return twoNorm
}
var norm float64
if L == 1 {
for _, val := range s {
norm += math.Abs(val)
}
return norm
}
if math.IsInf(L, 1) {
for _, val := range s {
norm = math.Max(norm, math.Abs(val))
}
return norm
}
for _, val := range s {
norm += math.Pow(math.Abs(val), L)
}
return math.Pow(norm, 1/L)
}
// Prod returns the product of the elements of the slice.
// Returns 1 if len(s) = 0.
func Prod(s []float64) float64 {
prod := 1.0
for _, val := range s {
prod *= val
}
return prod
}
// Reverse reverses the order of elements in the slice.
func Reverse(s []float64) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
}
// Round returns the half away from zero rounded value of x with prec precision.
//
// Special cases are:
// Round(±0) = +0
// Round(±Inf) = ±Inf
// Round(NaN) = NaN
func Round(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
if x < 0 {
x = math.Ceil(intermed - 0.5)
} else {
x = math.Floor(intermed + 0.5)
}
if x == 0 {
return 0
}
return x / pow
}
// RoundEven returns the half even rounded value of x with prec precision.
//
// Special cases are:
// RoundEven(±0) = +0
// RoundEven(±Inf) = ±Inf
// RoundEven(NaN) = NaN
func RoundEven(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
if isHalfway(intermed) {
correction, _ := math.Modf(math.Mod(intermed, 2))
intermed += correction
if intermed > 0 {
x = math.Floor(intermed)
} else {
x = math.Ceil(intermed)
}
} else {
if x < 0 {
x = math.Ceil(intermed - 0.5)
} else {
x = math.Floor(intermed + 0.5)
}
}
if x == 0 {
return 0
}
return x / pow
}
func isHalfway(x float64) bool {
_, frac := math.Modf(x)
frac = math.Abs(frac)
return frac == 0.5 || (math.Nextafter(frac, math.Inf(-1)) < 0.5 && math.Nextafter(frac, math.Inf(1)) > 0.5)
}
// Same returns true if the input slices have the same length and the all elements
// have the same value with NaN treated as the same.
func Same(s, t []float64) bool {
if len(s) != len(t) {
return false
}
for i, v := range s {
w := t[i]
if v != w && !math.IsNaN(v) && !math.IsNaN(w) {
return false
}
}
return true
}
// Scale multiplies every element in dst by the scalar c.
func Scale(c float64, dst []float64) {
if len(dst) > 0 {
f64.ScalUnitary(c, dst)
}
}
// Span returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u.
// Panics if len(dst) < 2.
//
// Also returns the mutated slice dst, so that it can be used in range expressions, like:
//
// for i, x := range Span(dst, l, u) { ... }
func Span(dst []float64, l, u float64) []float64 {
n := len(dst)
if n < 2 {
panic("floats: destination must have length >1")
}
step := (u - l) / float64(n-1)
for i := range dst {
dst[i] = l + step*float64(i)
}
return dst
}
// Sub subtracts, element-wise, the elements of s from dst. Panics if
// the lengths of dst and s do not match.
func Sub(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: length of the slices do not match")
}
f64.AxpyUnitaryTo(dst, -1, s, dst)
}
// SubTo subtracts, element-wise, the elements of t from s and
// stores the result in dst. Panics if the lengths of s, t and dst do not match.
func SubTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic("floats: length of subtractor and subtractee do not match")
}
if len(dst) != len(s) {
panic("floats: length of destination does not match length of subtractor")
}
f64.AxpyUnitaryTo(dst, -1, t, s)
return dst
}
// Sum returns the sum of the elements of the slice.
func Sum(s []float64) float64 {
var sum float64
for _, val := range s {
sum += val
}
return sum
}
// Within returns the first index i where s[i] <= v < s[i+1]. Within panics if:
// - len(s) < 2
// - s is not sorted
func Within(s []float64, v float64) int {
if len(s) < 2 {
panic("floats: slice length less than 2")
}
if !sort.Float64sAreSorted(s) {
panic("floats: input slice not sorted")
}
if v < s[0] || v >= s[len(s)-1] || math.IsNaN(v) {
return -1
}
for i, f := range s[1:] {
if v < f {
return i
}
}
return -1
}