Open up the code snippet below directly in the p5.js Web Editor.
<div>Teachable Machine Image Model - p5.js and ml5.js</div>
<script src="https://cdn.jsdelivr.net/npm/p5@latest/lib/p5.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/p5@latest/lib/addons/p5.dom.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/ml5@latest/dist/ml5.min.js"></script>
<script type="text/javascript">
// Classifier Variable
let classifier;
// Model URL
let imageModelURL = '{{URL}}';
// Video
let video;
let flippedVideo;
// To store the classification
let label = "";
// Load the model first
function preload() {
classifier = ml5.imageClassifier(imageModelURL + 'model.json');
}
function setup() {
createCanvas(320, 260);
// Create the video
video = createCapture(VIDEO);
video.size(320, 240);
video.hide();
flippedVideo = ml5.flipImage(video);
// Start classifying
classifyVideo();
}
function draw() {
background(0);
// Draw the video
image(flippedVideo, 0, 0);
// Draw the label
fill(255);
textSize(16);
textAlign(CENTER);
text(label, width / 2, height - 4);
}
// Get a prediction for the current video frame
function classifyVideo() {
flippedVideo = ml5.flipImage(video)
classifier.classify(flippedVideo, gotResult);
flippedVideo.remove();
}
// When we get a result
function gotResult(error, results) {
// If there is an error
if (error) {
console.error(error);
return;
}
// The results are in an array ordered by confidence.
// console.log(results[0]);
label = results[0].label;
// Classifiy again!
classifyVideo();
}
</script>