-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathrunEmbeddingSubSampling.m
69 lines (52 loc) · 2.31 KB
/
runEmbeddingSubSampling.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
function [trainingSetData,trainingSetAmps,projectionFiles] = runEmbeddingSubSampling(projectionDirectory,parameters)
%runEmbeddingSubSampling generates a training set given a set of .mat files
%
% Input variables:
%
% projectionDirectory -> directory path containing .mat projection
% files. Each of these files should contain
% an N x pcaModes variable, 'projections'
% parameters -> struct containing non-default choices for parameters
%
%
% Output variables:
%
% trainingSetData -> normalized wavelet training set
% (N x (pcaModes*numPeriods) )
% trainingSetAmps -> Nx1 array of training set wavelet amplitudes
% projectionFiles -> cell array of files in 'projectionDirectory'
%
%
% (C) Gordon J. Berman, 2014
% Princeton University
if nargin < 2
parameters = [];
end
parameters = setRunParameters(parameters);
setup_parpool(parameters.numProcessors)
projectionFiles = findAllImagesInFolders(projectionDirectory,'.mat');
N = parameters.trainingSetSize;
L = length(projectionFiles);
numPerDataSet = round(N/L);
numModes = parameters.pcaModes;
numPeriods = parameters.numPeriods;
trainingSetData = zeros(numPerDataSet*L,numModes*numPeriods);
trainingSetAmps = zeros(numPerDataSet*L,1);
useIdx = true(numPerDataSet*L,1);
for i=1:L
fprintf(1,['Finding training set contributions from data set #' ...
num2str(i) '\n']);
currentIdx = (1:numPerDataSet) + (i-1)*numPerDataSet;
[yData,signalData,~,signalAmps] = ...
file_embeddingSubSampling(projectionFiles{i},parameters);
[trainingSetData(currentIdx,:),trainingSetAmps(currentIdx)] = ...
findTemplatesFromData(signalData,yData,signalAmps,...
numPerDataSet,parameters);
a = sum(trainingSetData(currentIdx,:),2) == 0;
useIdx(currentIdx(a)) = false;
end
trainingSetData = trainingSetData(useIdx,:);
trainingSetAmps = trainingSetAmps(useIdx);
if parameters.numProcessors > 1 && parameters.closeMatPool
close_parpool
end