-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE_pems.py
215 lines (168 loc) · 7.66 KB
/
VAE_pems.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from linear_attention_transformer import LinearAttentionTransformer
import numpy as np
def get_torch_trans(heads=8, layers=1, channels=64):
encoder_layer = nn.TransformerEncoderLayer(
d_model=channels, nhead=heads, dim_feedforward=64, activation="gelu"
)
return nn.TransformerEncoder(encoder_layer, num_layers=layers)
def get_linear_trans(heads=8,layers=1,channels=64,localheads=0,localwindow=0):
return LinearAttentionTransformer(
dim = channels,
depth = layers,
heads = heads,
max_seq_len = 256,
n_local_attn_heads = 0,
local_attn_window_size = 0,
)
def Conv1d_with_init(in_channels, out_channels, kernel_size):
layer = nn.Conv1d(in_channels, out_channels, kernel_size)
nn.init.kaiming_normal_(layer.weight)
return layer
class VAE(nn.Module):
def __init__(self, config, inputdim=1):
super().__init__()
self.channels = config["channels"]
self.input_projection = Conv1d_with_init(inputdim, self.channels, 1)
self.input_projection_u = Conv1d_with_init(24*325, 30, 1)
self.input_projection_sigma = Conv1d_with_init(24*325, 30, 1)
self.trans = nn.Linear(30,24*325)
##################################################################################
###############################################################################
self.output_projection1 = Conv1d_with_init(self.channels, self.channels, 1)
self.output_projection2 = Conv1d_with_init(self.channels, 1, 1)
nn.init.zeros_(self.output_projection2.weight)
self.residual_layers = nn.ModuleList(
[
ResidualBlock(
side_dim=config["side_dim"],
channels=self.channels,
diffusion_embedding_dim=config["diffusion_embedding_dim"],
nheads=config["nheads"],
is_linear=config["is_linear"],
)
for _ in range(config["layers"])
]
)
def forward(self, x, cond_info):
B, inputdim, K, L = x.shape
############################
# for air36
adj = np.load('pems_bay_adj.npz')['adj']
xx = x.reshape(B, inputdim, K * L)
degree_matrix = np.diag(np.sum(adj, axis=1))
# Compute the Laplacian matrix
laplacian = degree_matrix - adj
adjadj = torch.tensor(laplacian).cuda().float()
x = torch.matmul(adjadj, x)
x = F.relu(x)
####################################
x = x.reshape(B, inputdim, K * L)
x = self.input_projection(x)
##################################
x = x.reshape(B, -1, K , L)
x = torch.matmul(adjadj, x)
x = x.reshape(B, -1, K * L)
####################################
z = x.permute(0,2,1)
u = self.input_projection_u(z)
u = F.sigmoid(u)
sigma = self.input_projection_sigma(z)
sigma =F.sigmoid(sigma)
u = u.permute(0,2,1)
sigma = sigma.permute(0,2,1)
device = torch.device('cuda:0')
guassian_noise = u + sigma * torch.randn(u.shape[0],u.shape[1],u.shape[2]).to(device)
x = self.trans(guassian_noise)
x = x + xx
x = x.reshape(B, self.channels, K, L)
skip = []
for layer in self.residual_layers:
x, skip_connection = layer(x, cond_info)
skip.append(skip_connection)
x = torch.sum(torch.stack(skip), dim=0) / math.sqrt(len(self.residual_layers))
x = x.reshape(B, self.channels, K * L)
x = self.output_projection1(x) # (B,channel,K*L)
x = F.relu(x)
x = self.output_projection2(x) # (B,1,K*L)
x = x.reshape(B, K, L)
####################################################
# KL = -2 * sigma - 0.5 * guassian_noise ** 2 + torch.exp(sigma) ** 2 + u ** 2
#
# KL = KL.mean()
# KL = 0.5 / (x.size(0) * x.size(1)* x.size(2)) * KL
eps = 1e-4
k = u.size(-1) # Dimensionality of the Gaussian distribution
# Ensure sigma is positive and avoid log(0) or division by zero
sigma = torch.clamp(sigma, min=eps)
# Trace term (sum of the diagonal elements of sigma, which are just sigma itself)
trace_term = torch.sum(sigma, dim=-1)
# Quadratic term (sum of squares of the mean vector u)
mu_term = torch.sum(u ** 2, dim=-1)
# Log determinant term (sum of the log of diagonal elements of sigma)
log_det_sigma = torch.sum(torch.log(sigma), dim=-1)
# KL divergence formula (batch-wise, per distribution)
kl_divergence = 0.5 * (trace_term + mu_term - k - log_det_sigma)
# Optionally: Averaging the KL divergence over the batch
kl_divergence_mean = kl_divergence.mean()
#######################################################################
return x, kl_divergence_mean
class ResidualBlock(nn.Module):
def __init__(self, side_dim, channels, diffusion_embedding_dim, nheads, is_linear=False):
super().__init__()
self.diffusion_projection = nn.Linear(diffusion_embedding_dim, channels)
self.cond_projection = Conv1d_with_init(side_dim, 2 * channels, 1)
self.mid_projection = Conv1d_with_init(channels, 2 * channels, 1)
self.output_projection = Conv1d_with_init(channels, 2 * channels, 1)
self.is_linear = is_linear
if is_linear:
self.time_layer = get_linear_trans(heads=nheads,layers=1,channels=channels)
self.feature_layer = get_linear_trans(heads=nheads,layers=1,channels=channels)
else:
self.time_layer = get_torch_trans(heads=nheads, layers=1, channels=channels)
self.feature_layer = get_torch_trans(heads=nheads, layers=1, channels=channels)
def forward_time(self, y, base_shape):
B, channel, K, L = base_shape
if L == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 2, 1, 3).reshape(B * K, channel, L)
if self.is_linear:
y = self.time_layer(y.permute(0, 2, 1)).permute(0, 2, 1)
else:
y = self.time_layer(y.permute(2, 0, 1)).permute(1, 2, 0)
y = y.reshape(B, K, channel, L).permute(0, 2, 1, 3).reshape(B, channel, K * L)
return y
def forward_feature(self, y, base_shape):
B, channel, K, L = base_shape
if K == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 3, 1, 2).reshape(B * L, channel, K)
if self.is_linear:
y = self.feature_layer(y.permute(0, 2, 1)).permute(0, 2, 1)
else:
y = self.feature_layer(y.permute(2, 0, 1)).permute(1, 2, 0)
y = y.reshape(B, L, channel, K).permute(0, 2, 3, 1).reshape(B, channel, K * L)
return y
def forward(self, x, cond_info):
B, channel, K, L = x.shape
base_shape = x.shape
x = x.reshape(B, channel, K * L)
y = x
y = self.forward_time(y, base_shape)
y = self.forward_feature(y, base_shape) # (B,channel,K*L)
y = self.mid_projection(y) # (B,2*channel,K*L)
_, cond_dim, _, _ = cond_info.shape
cond_info = cond_info.reshape(B, cond_dim, K * L)
cond_info = self.cond_projection(cond_info) # (B,2*channel,K*L)
y = y + cond_info
gate, filter = torch.chunk(y, 2, dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter) # (B,channel,K*L)
y = self.output_projection(y)
residual, skip = torch.chunk(y, 2, dim=1)
x = x.reshape(base_shape)
residual = residual.reshape(base_shape)
skip = skip.reshape(base_shape)
return (x + residual) / math.sqrt(2.0), skip