-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainingData.h
133 lines (99 loc) · 3.31 KB
/
TrainingData.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
*
* Fast Artificial Neural Network (fann) C# Wrapper
* Copyright (C) 2010 created by james (at) jamesbates.net
*
* On LinkedIn here http://uk.linkedin.com/in/alexanderjamesbates
*
* This wrapper is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This wrapper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#pragma once
#pragma managed (push,off)
#include "doublefann.h"
#include "fann_cpp.h"
#pragma managed (pop)
#include "ProxyImpl.h"
#using <mscorlib.dll>
using namespace System;
using namespace System::Collections::Generic;
namespace FANN
{
namespace Net
{
public ref class TrainingData : ProxyImpl<FANN::training_data>
{
public:
delegate void CallbackType ( unsigned int,
unsigned int,
unsigned int,
array<fann_type,1>^ ,
array<fann_type,1>^ );
TrainingData(void);
virtual ~TrainingData(void);
bool ReadTrainFromFile(System::String^ filename);
bool SaveTrain(System::String^ filename);
bool SaveTrainToFixed(System::String^ filename, unsigned int decimalPoint);
void ShuffleTrainData();
void Merge(TrainingData^ data);
property unsigned int TrainingDataLength
{
unsigned int get();
}
property int NumInputTrainData
{
int get();
}
property int NumOutputTrainData
{
int get();
}
property array<array<fann_type,1>^,1> ^ Input
{
array<array<fann_type,1>^,1> ^ get();
}
property array<array<fann_type,1>^,1> ^ Output
{
array<array<fann_type,1>^,1> ^ get();
}
void SetTrainData(unsigned int numdata,
unsigned int numInput,array<array<fann_type,1>^,1> ^input,
unsigned int numOutput,array<array<fann_type,1>^,1> ^output);
void CreateTrainFromCallback(unsigned int numdata,
unsigned int numinput,
unsigned int numOutput,
CallbackType^ fun);
void ScaleInputTrainData(fann_type newMin, fann_type newMax);
void ScaleOutputTrainData(fann_type newMin, fann_type newMax);
void ScaleTrainData(fann_type newMin, fann_type newMax);
void SubsetTrainData(unsigned int pos, unsigned int length);
/*
event CallbackType^ Callback
{
void add( CallbackType^ handler );
void remove( CallbackType^ handler );
void raise(unsigned int a, unsigned int b, unsigned int c, array<fann_type,1>^ d, array<fann_type,1>^ e);
}
*/
internal:
TrainingData(FANN::training_data *data,bool owner);
TrainingData(FANN::training_data *data);
static TrainingData^ Instance(FANN::training_data* data);
CallbackType^ callbackHandler;
private:
static Dictionary<unsigned int,TrainingData^>^ m_Instances = gcnew Dictionary<unsigned int,TrainingData^>();
};
}
}