-
Notifications
You must be signed in to change notification settings - Fork 5
/
digital_ISP.py
359 lines (299 loc) · 13.7 KB
/
digital_ISP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
helper functions for processing raw data and generate HDR from images
"""
import argparse
import os
import cv2
import utils
from imageio import imread, imsave
import numpy as np
class DigitalISP(object):
def __init__(self, cfgs, mdata_path='', img_dir='', img_list=''):
self.header = '[ISP]'
self.ratio = cfgs.get('ratio', -1)
self.anti_alias = cfgs.get('anti_alias', True)
self.ext = cfgs.get('img_ext', 'jpg')
self.do_ccm = cfgs.get('do_ccm', True)
self.do_wb = cfgs.get('do_wb', True)
self.do_gamma = cfgs.get('do_gamma', True)
self.overwrite_name = cfgs.get('ovrw_name', False)
self.find_static = cfgs.get('find_static', True)
if self.find_static:
self.img_buffers, self.img_diffs = [], []
self.diff_min = float('inf')
self.cfgs = cfgs
if mdata_path != '':
self.load_meta_data(mdata_path) # load meta data
if img_dir != '' and img_list != '':
self.config_inputs(img_dir, img_list)
def load_meta_data(self, mdata_path):
self.cam_data = np.load(mdata_path, allow_pickle=True)[()]
for key in self.cam_data:
self.prompt('%s: %s' % (key, self.cam_data[key]))
def set_meta_data(self, mdata):
self.cam_data = mdata
for key in self.cam_data:
self.prompt('%s: %s' % (key, self.cam_data[key]))
def config_inputs(self, img_dir, img_list):
self.prompt('Loading image list in %s' % (img_dir))
self.img_paths, self.expos = self.load_img_list(img_dir, img_list)
def load_img_list(self, img_dir='', img_list=''):
filenames = []
exposure_times = []
img_expo_list = np.genfromtxt(os.path.join(img_dir, img_list), dtype='str')
if img_expo_list.ndim == 1: # single image
img_expo_list = img_expo_list.reshape(1, -1)
img_paths = img_expo_list[:, 0]
img_paths = [os.path.join(img_dir, path) for path in img_paths]
expos = img_expo_list[:, 1].astype(np.float)
return img_paths, expos
def apply_white_balance(self, image, rgb_gains):
# image RGB: [H, W, C],
r_gain, g_gain, b_gain = rgb_gains
new_image = image.copy()
new_image[:, :, 0] *= r_gain # red channel
new_image[:, :, 2] *= b_gain # blue channel
new_image = new_image.clip(0, 1)
return new_image
def demosaic(self, raw, cvt_type=cv2.COLOR_BAYER_RG2RGB):
image = cv2.cvtColor(raw, cvt_type)
#image = image.clip(0, 1)
return image
def apply_color_correction(self, image, ccm):
# image RGB: [H, W, 3], ccm BGR [3, 3]
image = image[:, :, np.newaxis, :]
ccm = ccm[np.newaxis, np.newaxis, :, :]
image = (image * ccm).sum(3)
image = image.clip(0, 1)
return image
def apply_gamma(self, image, gamma=2.2):
image = image.clip(1e-8, 1)
image = np.power(image, 1.0 / gamma)
return image
def cvt_raw_to_rgb(self, save_dir, merge_hdr=False):
img_paths = self.img_paths
images = []
utils.make_file(save_dir)
num_exps = len(np.unique(self.expos))
for i, img_path in enumerate(img_paths):
self.prompt('%d/%d: %s' % (i+1, len(img_paths), img_path))
raw = np.load(os.path.join(img_path))
rgb_image = self.camera_isp(raw)
if self.find_static:
self.check_img_abs_diff(rgb_image, num_exps)
if merge_hdr:
images.append(rgb_image)
self.save_single_image(save_dir, img_path, rgb_image)
if merge_hdr:
self.merge_hdrs(save_dir, imgs=images, expos=self.expos)
if self.find_static:
diff_list_path = os.path.join(save_dir, 'img_diff_list.txt')
self.save_img_diff_list(diff_list_path, img_paths[num_exps:])
def save_single_image(self, save_dir, img_path, rgb_image):
save_name = 'Img_%s_%.3fr.%s' % (os.path.basename(img_path)[:-4], self.ratio, self.ext)
if self.anti_alias:
save_name = save_name[:-4] + '_anti' + save_name[-4:]
self.display(save_name)
save_path = os.path.join(save_dir, save_name)
if self.ext in ['jpg', 'png']:
self.save_uint8(save_path, rgb_image)
elif self.ext in ['tif']:
self.save_uint16(save_path, rgb_image)
def save_uint8(self, name, img):
if img.dtype != np.uint8:
img = (img.clip(0, 1) * 255).astype(np.uint8)
imsave(name, img)
def save_uint16(self, img_name, img):
"""img in [0, 1]"""
img = img.clip(0, 1) * 65535
img = img[:,:,[2,1,0]].astype(np.uint16)
cv2.imwrite(img_name, img)
def merge_hdrs(self, save_dir, imgs, expos):
self.prompt('Merging HDRs for %s' % (save_dir))
expos = expos / expos.min()
if imgs is None:
img_paths = self.img_paths
imgs = []
for i, img_path in enumerate(img_paths):
raw = np.load(os.path.join(img_path))
rgb_image = self.camera_isp(raw)
imgs.append(rgb_image)
hdr_merger = HDRMerger(bit=self.cfgs['bit'])
hdr = hdr_merger.merge_hdrs(imgs, expos)
utils.make_file(save_dir)
save_name = os.path.join(save_dir, '%s.hdr' % (os.path.basename(save_dir)))
self.save_hdr(save_name, hdr)
self.save_uint8(save_name[:-4] + '_loghdr.jpg', self.mulog_transform(hdr))
def save_hdr(self, name, hdr):
print(name)
hdr = hdr[:, :, [2, 1, 0]].astype(np.float32)
cv2.imwrite(name, hdr)
def mulog_transform(self, in_tensor, mu=5000.0):
denom = np.log(1.0 + mu)
out_tensor = np.log(1.0 + mu * in_tensor) / denom
return out_tensor
def camera_isp(self, raw):
self.display('Demosaicing')
demosaic_img = self.demosaic(raw)
demosaic_img = demosaic_img[:,:,::-1] # BGR to RGB
demosaic_img = demosaic_img.astype(np.double) / (2**self.cfgs['bit'] - 1)
ratio = self.ratio
if ratio > 0 and ratio < 1:
h, w, c = demosaic_img.shape
if self.anti_alias:
kernel_size = self.get_smooth_kernel_size(factor=self.ratio)
#print(kernel_size)
demosaic_img = cv2.GaussianBlur(demosaic_img, kernel_size, sigmaX=0)
demosaic_img = cv2.resize(demosaic_img, (int(w*ratio), int(h*ratio)))
if self.do_wb:
self.display('White balance')
wb_image = self.apply_white_balance(demosaic_img, self.cam_data['wb0'])
else:
wb_image = demosaic_img
if self.do_ccm:
self.display('Color correction')
cc_image = self.apply_color_correction(wb_image, self.cam_data['ccm0'])
else:
cc_image = wb_image
if self.do_gamma:
self.display('Gamma correction')
image = self.apply_gamma(cc_image)
return image
def get_smooth_kernel_size(self, factor):
if factor == 0.5:
return (3, 3)
elif factor == 0.375:
return (3, 3)
elif factor in [0.2, 0.25]:
return (5, 5)
elif factor == 0.125:
return (7, 7)
else:
raise Exception('Unknown factor')
def display(self, string):
mute = self.cfgs.get('mute', True)
if not mute:
print(string)
def prompt(self, string):
print('%s %s' % (self.header, string))
def load_data(self, img_paths, bit=12):
imgs = []
for i, img_path in enumerate(img_paths):
raw = np.load(os.path.join(img_dir, img_path))
raw = raw.astype(np.double) / (2**bit - 1)
imgs.append(raw)
return imgs
def check_img_abs_diff(self, cur_img, num_exps, thres=0.005):
if len(self.img_buffers) == num_exps:
diff = np.abs(cur_img - self.img_buffers[0]).sum() / cur_img.size
self.prompt('Image Difference: %.8f' % diff)
if diff < thres and diff < self.diff_min:
self.prompt('*** Found static frames ***')
self.diff_min = diff
self.img_buffers.pop(0)
self.img_diffs.append(diff)
self.img_buffers.append(cur_img)
def save_img_diff_list(self, list_path, img_paths):
if len(img_paths) == 0:
return
img_diff_list = ['%s %.6f' % (os.path.basename(img), diff) for img, diff in zip(img_paths, self.img_diffs)]
min_idx = np.argmin(self.img_diffs)
img_diff_min = "Min: %s %.6f" % (os.path.basename(img_paths[min_idx]), self.img_diffs[min_idx])
self.prompt(img_diff_min)
img_diff_list.append(img_diff_min)
utils.save_list(list_path, img_diff_list)
class HDRMerger(object):
def __init__(self, bit=12):
self.bit = bit # bit of LDRs
def merge_hdrs(self, imgs, expos):
# imgs: list of [H, W, 3], expos: n-vector
imgs, expos = self.merge_same_exposure_imgs(imgs, expos)
all_image = np.stack(imgs, 3) # [h, w, 3, N]
ws = self.get_blend_weights(all_image) # [h, w, 3, N]
fZ = np.power(all_image, 2.2) # linear radiance
hdr = (ws * (fZ / expos[None, None, None])).sum(3) / (ws.sum(3) + 1e-8)
return hdr
def merge_same_exposure_imgs(self, imgs, expos):
num_in = len(imgs)
expo_img_dict = {}
for expo, img in zip(expos, imgs):
if expo not in expo_img_dict:
expo_img_dict[expo] = []
expo_img_dict[expo].append(img)
new_imgs, new_expos = [], []
for expo in expo_img_dict.keys():
avg_img = np.stack(expo_img_dict[expo], 3).mean(3)
new_imgs.append(avg_img)
new_expos.append(expo)
#cv2.imwrite('avg_img_%d.jpg' % expo, (avg_img[:,:,::-1] * 255).astype(np.uint8))
print('[HDR] Merged same exposure images: %d->%d' % (num_in, len(new_imgs)))
return new_imgs, np.array(new_expos).astype(np.float)
def get_blend_weights(self, all_image, default=False):
num_img = all_image.shape[3]
if num_img > 3 or default == True: # SIGGRAPH 1997
zmax = 2**self.bit - 1
w = np.array([z if z < 0.5 * zmax else zmax - z for z in range(zmax+1)])
Z = (all_image * zmax).astype(int) # scale to [0, 2**bit-1]
ws = w[Z] # [h, w, 3, N]
# Check if pixels over-exposed in all images
if (all_image.sum(3) == num_img).sum() > 0:
oe_region = all_image.sum(3) == num_img # all 1
ws[oe_region] = [1] + [0] * (num_img - 1) # [1, 0, 0, 0...]
elif num_img == 3:
ws = self.get_3exp_weights(all_image)
elif num_img == 2:
#ws = self.get_2exp_weights(all_image, ref_idx=1)
ws = self.get_2exp_weights_sharp(all_image, ref_idx=1)
else:
raise Exception('Invalid image number: %d' % num_img)
return ws
def get_3exp_weights(self, x):
low_exp_img, mid_exp_img, high_exp_img = np.split(x, 3, 3)
low_index = (mid_exp_img <= 0.5).astype(float)
low_exp_w = low_index * mid_exp_img * 2 + (1 - low_index) * 1
mid_exp_w = low_index * mid_exp_img * 2 + (1 - low_index) * (1 - mid_exp_img) * 2
high_exp_w = low_index * 1 + (1 - low_index) * (1 - mid_exp_img) * 2
weight = np.concatenate([low_exp_w, mid_exp_w, high_exp_w], 3)
return weight
def get_2exp_weights(self, x, ref_idx=0):
assert (ref_idx in [0, 1])
ref_img = np.split(x, 2, 3)[ref_idx]
low_index = (ref_img <= 0.5).astype(float)
low_exp_w = low_index * ref_img * 2 + (1 - low_index) * 1
high_exp_w = low_index * 1 + (1 - low_index) * (1 - ref_img) * 2
weight = np.concatenate([low_exp_w, high_exp_w], 3)
return weight
def get_2exp_weights_sharp(self, x, ref_idx=0):
assert (ref_idx in [0, 1])
ref_img = np.split(x, 2, 3)[ref_idx]
low_index = (ref_img <= 0.5).astype(float)
low_left_part = 1 - np.sqrt((1 - (2*ref_img)**2).clip(0))
low_exp_w = low_index * low_left_part + (1 - low_index) * 1
high_right_part = 1 - np.sqrt((1 - (2*ref_img-2)**2).clip(0))
high_exp_w = low_index * 1 + (1 - low_index) * high_right_part
weight = np.concatenate([low_exp_w, high_exp_w], 3)
return weight
def main(args):
cfgs = vars(args)
digital_isp = DigitalISP(cfgs, mdata_path=os.path.join(args.img_dir, args.cam_data),
img_dir=args.img_dir, img_list=args.img_list)
rgb_save_dir = os.path.join(args.img_dir)
digital_isp.cvt_raw_to_rgb(utils.remove_slash(rgb_save_dir), merge_hdr=args.merge_hdr)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--img_dir', default='.')
parser.add_argument('--img_list', default='img_list.txt')
parser.add_argument('--cam_data', default='cam_data.npy')
parser.add_argument('--bit', default=12, type=int)
parser.add_argument('--ratio', default=0.375, type=float)
parser.add_argument('--img_ext', default='jpg')
parser.add_argument('--ovrw_name', default=False, action='store_true') # overwrite
parser.add_argument('--do_ccm', default=True, action='store_false')
parser.add_argument('--do_wb', default=True, action='store_false')
parser.add_argument('--do_gamma', default=True, action='store_false')
parser.add_argument('--sharp_w', default=True, action='store_false')
parser.add_argument('--anti_alias', default=True, action='store_false')
parser.add_argument('--merge_hdr', default=False, action='store_true')
parser.add_argument('--find_static', default=True, action='store_false')
args = parser.parse_args()
main(args)