-
Notifications
You must be signed in to change notification settings - Fork 6
/
script_mnist_deep_rewiring_with_global_constraint.py
287 lines (227 loc) · 12.2 KB
/
script_mnist_deep_rewiring_with_global_constraint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import tensorflow as tf
import numpy as np
import numpy.random as rd
from tensorflow.examples.tutorials.mnist import input_data
import time
import pickle
mnist = input_data.read_data_sets("../datasets/MNIST", one_hot=True)
# Define the main hyper parameter accessible from the shell
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('n_epochs', 10, 'number of iteration (55000 is one epoch)')
tf.app.flags.DEFINE_integer('batch', 10, 'number of iteration (55000 is one epoch)')
tf.app.flags.DEFINE_integer('print_every', 100, 'print every k steps')
tf.app.flags.DEFINE_integer('n1', 300, 'Number of neurons in the first hidden layer')
tf.app.flags.DEFINE_integer('n2', 100, 'Number of neurons in the second hidden layer')
#
tf.app.flags.DEFINE_float('p01', .01, 'Proportion of connected synpases at initialization')
tf.app.flags.DEFINE_float('p02', .03, 'Proportion of connected synpases at initialization')
tf.app.flags.DEFINE_float('p0out', .3, 'Proportion of connected synpases at initialization')
tf.app.flags.DEFINE_float('l1', 1e-5, 'l1 regularization coefficient')
tf.app.flags.DEFINE_float('gdnoise', 1e-5, 'gradient noise coefficient')
tf.app.flags.DEFINE_float('lr', 0.5, 'Learning rate')
tf.app.flags.DEFINE_float('lr_epoch_decay', 0.8, 'Learning rate decay')
# Define useful constants
dtype = tf.float32
n_pixels = 28 * 28
n_1 = FLAGS.n1
n_2 = FLAGS.n2
n_out = 10
n_image_per_epoch = mnist.train.images.shape[0]
n_iter = FLAGS.n_epochs * n_image_per_epoch // FLAGS.batch
print_every = FLAGS.print_every
n_minibatch = FLAGS.batch
lr = tf.Variable(FLAGS.lr, trainable=False, dtype=tf.float32)
decay_lr_op = tf.assign(lr, lr * FLAGS.lr_epoch_decay)
# Define the number of neurons per layer
sparsity_list = [FLAGS.p01, FLAGS.p02, FLAGS.p0out]
nb_non_zero_coeff_list = [n_pixels * n_1 * FLAGS.p01, n_1 * n_2 * FLAGS.p02, n_2 * n_out * FLAGS.p0out]
nb_non_zero_coeff_list = [int(n) for n in nb_non_zero_coeff_list]
# Placeholders
x = tf.placeholder(dtype, [None, n_pixels])
y = tf.placeholder(dtype, [None, n_out])
def sample_matrix_specific_reconnection_number_for_global_fixed_connectivity(theta_list, ps, upper_bound_check=False):
with tf.name_scope('NBreconnectGenerator'):
theta_vals = [theta.read_value() for theta in theta_list]
# Compute size and probability of connections
nb_possible_connections_list = [tf.cast(tf.size(th), dtype=tf.float32) * p for th, p in zip(theta_list, ps)]
total_possible_connections = tf.reduce_sum(nb_possible_connections_list)
max_total_connections = tf.cast(total_possible_connections, dtype=tf.int32)
sampling_probs = [nb_possible_connections / total_possible_connections \
for nb_possible_connections in nb_possible_connections_list]
def nb_connected(theta_val):
is_con = tf.greater(theta_val, 0)
n_connected = tf.reduce_sum(tf.cast(is_con, tf.int32))
return n_connected
total_connected = tf.reduce_sum([nb_connected(theta) for theta in theta_vals])
if upper_bound_check:
assert_upper_bound_check = tf.Assert(tf.less_equal(total_connected, max_total_connections),
data=[max_total_connections, total_connected],
name='RewiringUpperBoundCheck')
else:
assert_upper_bound_check = tf.Assert(True,
data=[max_total_connections, total_connected],
name='SkippedRewiringUpperBoundCheck')
with tf.control_dependencies([assert_upper_bound_check]):
nb_reconnect = tf.maximum(0, max_total_connections - total_connected)
sample_split = tf.distributions.Categorical(probs=sampling_probs).sample(nb_reconnect)
is_class_i_list = [tf.equal(sample_split, i) for i in range(len(theta_list))]
counts = [tf.reduce_sum(tf.cast(is_class_i, dtype=tf.int32)) for is_class_i in is_class_i_list]
return counts
def weight_sampler_strict_number(n_in, n_out, nb_non_zero, dtype=tf.float32):
'''
Returns a weight matrix and its underlying, variables, and sign matrices needed for rewiring.
:param n_in:
:param n_out:
:param p0:
:param dtype:
:return:
'''
with tf.name_scope('SynapticSampler'):
w_0 = rd.randn(n_in, n_out) / np.sqrt(n_in) # initial weight values
# Gererate the random mask
is_con_0 = np.zeros((n_in, n_out), dtype=bool)
ind_in = rd.choice(np.arange(n_in), size=nb_non_zero)
ind_out = rd.choice(np.arange(n_out), size=nb_non_zero)
is_con_0[ind_in, ind_out] = True
# Generate random signs
sign_0 = np.sign(rd.randn(n_in, n_out))
# Define the tensorflow matrices
th = tf.Variable(np.abs(w_0) * is_con_0, dtype=dtype, name='theta')
w_sign = tf.Variable(sign_0, dtype=dtype, trainable=False, name='sign')
is_connected = tf.greater(th, 0, name='mask')
w = tf.where(condition=is_connected, x=w_sign * th, y=tf.zeros((n_in, n_out), dtype=dtype), name='weight')
return w, w_sign, th, is_connected
def assert_connection_number(theta, targeted_number):
'''
Function to check during the tensorflow simulation if the number of connection in well defined after each simulation.
:param theta:
:param targeted_number:
:return:
'''
th = theta.read_value()
is_con = tf.greater(th, 0)
nb_is_con = tf.reduce_sum(tf.cast(is_con, tf.int32))
assert_is_con = tf.Assert(tf.equal(nb_is_con, targeted_number), data=[nb_is_con, targeted_number],
name='NumberOfConnectionCheck')
return assert_is_con
def rewiring(theta, nb_reconnect, epsilon=1e-12):
'''
The rewiring operation to use after each iteration.
:param theta:
:param target_nb_connection:
:return:
'''
with tf.name_scope('rewiring'):
th = theta.read_value()
is_con = tf.greater(th, 0)
nb_reconnect = tf.maximum(nb_reconnect, 0)
reconnect_candidate_coord = tf.where(tf.logical_not(is_con), name='CandidateCoord')
n_candidates = tf.shape(reconnect_candidate_coord)[0]
reconnect_sample_id = tf.random_shuffle(tf.range(n_candidates))[:nb_reconnect]
reconnect_sample_coord = tf.gather(reconnect_candidate_coord, reconnect_sample_id, name='SelectedCoord')
# Apply the rewiring
reconnect_vals = tf.fill(dims=[nb_reconnect], value=epsilon, name='InitValues')
reconnect_op = tf.scatter_nd_update(theta, reconnect_sample_coord, reconnect_vals, name='Reconnect')
with tf.control_dependencies([reconnect_op]):
return tf.no_op('Rewiring')
# Define the computational graph
with tf.name_scope('Layer1'):
W_1, _, th_1, _ = weight_sampler_strict_number(n_pixels, n_1, nb_non_zero_coeff_list[0])
a_1 = tf.matmul(x, W_1)
z_1 = tf.nn.relu(a_1)
with tf.name_scope('Layer2'):
W_2, _, th_2, _ = weight_sampler_strict_number(n_1, n_2, nb_non_zero_coeff_list[1])
a_2 = tf.matmul(z_1, W_2)
z_2 = tf.nn.relu(a_2)
with tf.name_scope('OutLayer'):
w_out, _, th_out, _ = weight_sampler_strict_number(n_2, n_out, nb_non_zero_coeff_list[2])
logits_predict = tf.matmul(z_2, w_out)
# Make list of weight for convenience
theta_list = [th_1, th_2, th_out]
weight_list = [W_1, W_2, w_out]
with tf.name_scope('Loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits_predict))
is_correct = tf.equal(tf.argmax(y, axis=1), tf.argmax(logits_predict, axis=1))
accuracy = tf.reduce_mean(tf.cast(is_correct, dtype=dtype))
# Define the training step operation
with tf.name_scope('Training'):
apply_gradients = tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy, var_list=theta_list)
mask_connected = lambda th: tf.cast(tf.greater(th, 0), tf.float32)
noise_update = lambda th: tf.random_normal(stddev=FLAGS.gdnoise, shape=tf.shape(th))
add_gradient_op_list = [tf.assign_add(th, lr * mask_connected(th) * noise_update(th)) for th in theta_list]
apply_l1_reg = [tf.assign_add(th, - lr * mask_connected(th) * FLAGS.l1) for th in theta_list]
asserts = [assert_connection_number(th, nb) for th, nb in zip(theta_list, nb_non_zero_coeff_list)]
with tf.control_dependencies([apply_gradients] + add_gradient_op_list + apply_l1_reg):
number_of_rewired_connections = sample_matrix_specific_reconnection_number_for_global_fixed_connectivity(
theta_list, [FLAGS.p01, FLAGS.p02, FLAGS.p0out])
apply_rewiring = [rewiring(th, nb_reconnect=nb) for th, nb in zip(theta_list, number_of_rewired_connections)]
with tf.control_dependencies(apply_rewiring):
train_step = tf.no_op('Train')
# Some statistics for monitoring the simulation
with tf.name_scope('Stats'):
nb_zeros = [tf.reduce_sum(tf.cast(tf.equal(w, 0), dtype)) for w in weight_list]
sizes = [tf.cast(tf.size(w), dtype=dtype) for w in weight_list]
layer_connectivity = [tf.cast(1, dtype=dtype) - nb_z / size for w, nb_z, size in zip(weight_list, nb_zeros, sizes)]
global_connectivity = tf.cast(1, dtype=dtype) - tf.reduce_sum(nb_zeros) / tf.reduce_sum(sizes)
#
sess = tf.Session()
sess.run(tf.global_variables_initializer())
results = {
'loss_list': [],
'acc_list': [],
'global_connectivity_list': [],
'layer_connectivity_list': [],
'n_synapse': [],
'iteration_list': [],
'epoch_list': [],
'turnover_list': [],
'training_time_list': []}
turnover = [0, 0, 0]
training_time = 0
acc, loss = sess.run([accuracy, cross_entropy], feed_dict={x: mnist.test.images, y: mnist.test.labels})
last_epoch = 0
for k in range(n_iter):
if last_epoch + 1 == mnist.train.epochs_completed:
sess.run(decay_lr_op)
last_epoch = mnist.train.epochs_completed
print('Learning rate decayed: {:.2g}'.format(sess.run(lr)))
layer_connectivity_numpy = sess.run(layer_connectivity)
global_connectivity_numpy = sess.run(global_connectivity)
if np.mod(k, print_every) == 0:
t0 = time.time()
acc, loss = sess.run([accuracy, cross_entropy], feed_dict={x: mnist.test.images, y: mnist.test.labels})
testing_time = time.time() - t0
print(
'Epoch: {} \t time/it: {:.3g} s \t time/test: {:.3g} s \t it: {} \t acc: {:.3g} \t loss {:.3g} \t sparsity: {:.3g} \t layer wise:'.format(
mnist.train.epochs_completed, training_time, testing_time, k, acc, loss,
global_connectivity_numpy) + np.array_str(
np.array(layer_connectivity_numpy), precision=2))
for key, variable in zip(
['loss', 'acc', 'global_connectivity', 'layer_connectivity', 'iteration', 'epoch', 'training_time',
'turnover'],
[loss, acc, global_connectivity_numpy, layer_connectivity_numpy, k, mnist.train.epochs_completed,
training_time, turnover]):
results[key + '_list'].append(variable)
if np.mod(k, print_every) == 0:
th_np_old = sess.run(theta_list)
batch_xs, batch_ys = mnist.train.next_batch(n_minibatch)
t0 = time.time()
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
training_time = time.time() - t0
if np.mod(k, print_every) == 0:
th_np_new = sess.run(theta_list)
creation_nbs = [np.sum(np.logical_and(w_new > 0, w_old <= 0)) for w_new, w_old in zip(th_np_new, th_np_old)]
deletion_nbs = [np.sum(np.logical_and(w_new <= 0, w_old > 0)) for w_new, w_old in zip(th_np_new, th_np_old)]
n_cons = [np.sum(w_new > 0) for w_new in th_np_new]
turnover = creation_nbs
print('Syn created: {} {} {}'.format(creation_nbs[0], creation_nbs[1], creation_nbs[2]))
print('Syn deleted: {} {} {}'.format(deletion_nbs[0], deletion_nbs[1], deletion_nbs[2]))
print('Syn connected: {} {} {} (total: {})'.format(n_cons[0], n_cons[1], n_cons[2], n_cons[0] + n_cons[1] + n_cons[2]))
# add weight matrix
weights_storage = {'weight_list': sess.run(weight_list),
'theta_list': sess.run(theta_list)}
del sess
with open('results/deep_r_results.pickle', 'wb') as f:
pickle.dump(results, f)
with open('results/deep_r_final_weights.pickle', 'wb') as f:
pickle.dump(weights_storage, f, protocol=pickle.HIGHEST_PROTOCOL)