Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error in 03_Grouping/Alcohol_Consumption/Exercise_with_solutions.ipynb #155

Open
vlsireddy opened this issue Jan 2, 2024 · 0 comments
Open

Comments

@vlsireddy
Copy link

vlsireddy commented Jan 2, 2024

Hi,

03_Grouping/Alcohol_Consumption/Exercise_with_solutions.ipynb

error in ### Step 6. Print the mean alcohol consumption per continent for every column

i thought something wrong in my own code. but then i opened and executed the Exercise_with_solutions.pynb file, the error can be replicated there as well

drinks.groupby('continent').mean()

=================================================================

TypeError Traceback (most recent call last)
File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\groupby.py:1942, in GroupBy._agg_py_fallback(self, how, values, ndim, alt)
1941 try:
-> 1942 res_values = self._grouper.agg_series(ser, alt, preserve_dtype=True)
1943 except Exception as err:

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\ops.py:863, in BaseGrouper.agg_series(self, obj, func, preserve_dtype)
861 preserve_dtype = True
--> 863 result = self._aggregate_series_pure_python(obj, func)
865 npvalues = lib.maybe_convert_objects(result, try_float=False)

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\ops.py:884, in BaseGrouper._aggregate_series_pure_python(self, obj, func)
883 for i, group in enumerate(splitter):
--> 884 res = func(group)
885 res = extract_result(res)

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\groupby.py:2454, in GroupBy.mean..(x)
2451 else:
2452 result = self._cython_agg_general(
2453 "mean",
-> 2454 alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only),
2455 numeric_only=numeric_only,
2456 )
2457 return result.finalize(self.obj, method="groupby")

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\series.py:6409, in Series.mean(self, axis, skipna, numeric_only, **kwargs)
6401 @doc(make_doc("mean", ndim=1))
6402 def mean(
6403 self,
(...)
6407 **kwargs,
6408 ):
-> 6409 return NDFrame.mean(self, axis, skipna, numeric_only, **kwargs)

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\generic.py:12407, in NDFrame.mean(self, axis, skipna, numeric_only, **kwargs)
12400 def mean(
12401 self,
12402 axis: Axis | None = 0,
(...)
12405 **kwargs,
12406 ) -> Series | float:

12407 return self._stat_function(
12408 "mean", nanops.nanmean, axis, skipna, numeric_only, **kwargs
12409 )

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\generic.py:12364, in NDFrame._stat_function(self, name, func, axis, skipna, numeric_only, **kwargs)
12362 validate_bool_kwarg(skipna, "skipna", none_allowed=False)

12364 return self._reduce(
12365 func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only
12366 )

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\series.py:6317, in Series._reduce(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)
6313 raise TypeError(
6314 f"Series.{name} does not allow {kwd_name}={numeric_only} "
6315 "with non-numeric dtypes."
6316 )
-> 6317 return op(delegate, skipna=skipna, **kwds)

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\nanops.py:147, in bottleneck_switch.call..f(values, axis, skipna, **kwds)
146 else:
--> 147 result = alt(values, axis=axis, skipna=skipna, **kwds)
149 return result

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\nanops.py:404, in _datetimelike_compat..new_func(values, axis, skipna, mask, **kwargs)
402 mask = isna(values)
--> 404 result = func(values, axis=axis, skipna=skipna, mask=mask, **kwargs)
406 if datetimelike:

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\nanops.py:720, in nanmean(values, axis, skipna, mask)
719 the_sum = values.sum(axis, dtype=dtype_sum)
--> 720 the_sum = _ensure_numeric(the_sum)
722 if axis is not None and getattr(the_sum, "ndim", False):

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\nanops.py:1701, in _ensure_numeric(x)
1699 if isinstance(x, str):
1700 # GH#44008, GH#36703 avoid casting e.g. strings to numeric
-> 1701 raise TypeError(f"Could not convert string '{x}' to numeric")
1702 try:

TypeError: Could not convert string 'AlgeriaAngolaBeninBotswanaBurkina FasoBurundiCote d'IvoireCabo VerdeCameroonCentral African RepublicChadComorosCongoDR CongoDjiboutiEgyptEquatorial GuineaEritreaEthiopiaGabonGambiaGhanaGuineaGuinea-BissauKenyaLesothoLiberiaLibyaMadagascarMalawiMaliMauritaniaMauritiusMoroccoMozambiqueNamibiaNigerNigeriaRwandaSao Tome & PrincipeSenegalSeychellesSierra LeoneSomaliaSouth AfricaSudanSwazilandTogoTunisiaUgandaTanzaniaZambiaZimbabwe' to numeric

The above exception was the direct cause of the following exception:

TypeError Traceback (most recent call last)
Cell In[5], line 1
----> 1 drinks.groupby('continent').mean()

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\groupby.py:2452, in GroupBy.mean(self, numeric_only, engine, engine_kwargs)
2445 return self._numba_agg_general(
2446 grouped_mean,
2447 executor.float_dtype_mapping,
2448 engine_kwargs,
2449 min_periods=0,
2450 )
2451 else:
-> 2452 result = self._cython_agg_general(
2453 "mean",
2454 alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only),
2455 numeric_only=numeric_only,
2456 )
2457 return result.finalize(self.obj, method="groupby")

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\groupby.py:1998, in GroupBy._cython_agg_general(self, how, alt, numeric_only, min_count, **kwargs)
1995 result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt)
1996 return result
-> 1998 new_mgr = data.grouped_reduce(array_func)
1999 res = self._wrap_agged_manager(new_mgr)
2000 if how in ["idxmin", "idxmax"]:

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\internals\managers.py:1470, in BlockManager.grouped_reduce(self, func)
1466 if blk.is_object:
1467 # split on object-dtype blocks bc some columns may raise
1468 # while others do not.
1469 for sb in blk._split():
-> 1470 applied = sb.apply(func)
1471 result_blocks = extend_blocks(applied, result_blocks)
1472 else:

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\internals\blocks.py:392, in Block.apply(self, func, **kwargs)
386 @Final
387 def apply(self, func, **kwargs) -> list[Block]:
388 """
389 apply the function to my values; return a block if we are not
390 one
391 """
--> 392 result = func(self.values, **kwargs)
394 result = maybe_coerce_values(result)
395 return self._split_op_result(result)

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\groupby.py:1995, in GroupBy._cython_agg_general..array_func(values)
1992 return result
1994 assert alt is not None
-> 1995 result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt)
1996 return result

File ~\OneDrive\Documents\pandas_exercises\venv\Lib\site-packages\pandas\core\groupby\groupby.py:1946, in GroupBy._agg_py_fallback(self, how, values, ndim, alt)
1944 msg = f"agg function failed [how->{how},dtype->{ser.dtype}]"
1945 # preserve the kind of exception that raised
-> 1946 raise type(err)(msg) from err
1948 if ser.dtype == object:
1949 res_values = res_values.astype(object, copy=False)

TypeError: agg function failed [how->mean,dtype->object]

Thanks

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant