-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
executable file
·208 lines (165 loc) · 5.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import csv
import logging
import math
import random
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
_LOGGER = None
def get_rank():
return dist.get_rank()
def get_world_size():
return dist.get_world_size()
def mkdir(path):
os.makedirs(path, exist_ok=True)
def random_seed(seed_value):
np.random.seed(seed_value)
torch.manual_seed(seed_value)
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
def parameters_string(module):
lines = [
"",
"List of model parameters:",
"=" * 105,
]
row_format = "{name:<60} {shape:>27} ={total_size:>15,d}"
params = list(module.named_parameters())
for name, param in params:
lines.append(row_format.format(
name=name,
shape=" * ".join(str(p) for p in param.size()),
total_size=param.numel()
))
lines.append("=" * 105)
lines.append(row_format.format(
name="all parameters",
shape="sum of above",
total_size=sum(int(param.numel()) for name, param in params)
))
lines.append("")
return "\n".join(lines)
def create_logger(log_file, level=logging.INFO):
global _LOGGER
if _LOGGER is not None:
return _LOGGER
l = logging.getLogger('global')
formatter = logging.Formatter('[%(asctime)s][%(filename)15s][line:%(lineno)4d][%(levelname)8s] %(message)s')
fh = logging.FileHandler(log_file)
fh.setFormatter(formatter)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
l.setLevel(level)
l.addHandler(fh)
l.addHandler(sh)
l.propagate = False
_LOGGER = l
return l
def get_logger():
return _LOGGER
class Logger(object):
def __init__(self, path, header):
self.log_file = open(path, 'w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
class AverageMeter(object):
def __init__(self, length=0):
self.length = length
self.reset()
def reset(self):
if self.length > 0:
self.history, self.history_num = [], []
else:
self.count = 0
self.sum = 0.0
self.val = 0.0
self.avg = 0.0
def update(self, val, num=1):
assert num > 0
if self.length > 0:
self.history.append(val * num)
self.history_num.append(num)
if len(self.history) > self.length:
del self.history[0]
del self.history_num[0]
self.val = val
self.avg = np.sum(self.history) / np.sum(self.history_num)
else:
self.val = val
self.sum += val * num
self.count += num
self.avg = self.sum / self.count
class DistributedSampler(Sampler):
def __init__(self, dataset, world_size=None, rank=None, round_down=False):
if world_size is None:
world_size = get_world_size()
if rank is None:
rank = get_rank()
self.dataset = dataset
self.world_size = world_size
self.rank = rank
self.round_down = round_down
self.epoch = 0
self.total_size = len(self.dataset)
if self.round_down:
self.num_samples = int(math.floor(len(self.dataset) / self.world_size))
else:
self.num_samples = int(math.ceil(len(self.dataset) / self.world_size))
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = list(torch.randperm(len(self.dataset), generator=g))
assert len(indices) == self.total_size
# subsample
offset = self.num_samples * self.rank
indices = indices[offset:offset + self.num_samples]
if self.round_down:
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
def load_pretrain(pretrain_opt, net):
checkpoint = torch.load(pretrain_opt.path, map_location=lambda storage, loc: storage.cuda())
if pretrain_opt.get('state_dict_key', None) is not None:
checkpoint = checkpoint[pretrain_opt.state_dict_key]
if pretrain_opt.get('delete_prefix', None):
keys = set(checkpoint.keys())
for k in keys:
if k.startswith(pretrain_opt.delete_prefix):
checkpoint.pop(k)
if pretrain_opt.get('replace_prefix', None) is not None:
keys = set(checkpoint.keys())
for k in keys:
if k.startswith(pretrain_opt.replace_prefix):
new_k = pretrain_opt.get('replace_to', '') + k[len(pretrain_opt.replace_prefix):]
checkpoint[new_k] = checkpoint.pop(k)
net.load_state_dict(checkpoint, strict=False)
# if get_rank() == 0:
# ckpt_keys = set(checkpoint.keys())
# own_keys = set(net.state_dict().keys())
# missing_keys = own_keys - ckpt_keys
# ignore_keys = ckpt_keys - own_keys
# loaded_keys = own_keys - missing_keys
# logger = get_logger()
# for k in missing_keys:
# logger.info('Caution: missing key {}'.format(k))
# for k in ignore_keys:
# logger.info('Caution: redundant key {}'.format(k))
# logger.info('Loaded {} key(s) from pre-trained model at {}'.format(len(loaded_keys), pretrain_opt.path))