-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathval.py
137 lines (106 loc) · 5.42 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
This script contain valiudation code at the time of training
"""
import time
import torch
import numpy as np
from modules import utils
import modules.evaluation as evaluate
from modules.box_utils import decode
from modules.utils import get_individual_labels
import torch.utils.data as data_utils
from data import custum_collate
logger = utils.get_logger(__name__)
def val(args, net, val_dataset):
val_data_loader = data_utils.DataLoader(val_dataset, args.BATCH_SIZE, num_workers=args.NUM_WORKERS,
shuffle=False, pin_memory=True, collate_fn=custum_collate)
args.MODEL_PATH = args.SAVE_ROOT + 'model_{:06d}.pth'.format(args.EVAL_EPOCHS[0])
logger.info('Loaded model from :: '+args.MODEL_PATH)
net.load_state_dict(torch.load(args.MODEL_PATH))
mAP, ap_all, ap_strs = validate(args, net, val_data_loader, val_dataset, args.EVAL_EPOCHS[0])
label_types = args.label_types + ['ego_action']
all_classes = args.all_classes + [args.ego_classes]
for nlt in range(args.num_label_types+1):
for ap_str in ap_strs[nlt]:
logger.info(ap_str)
ptr_str = '\n{:s} MEANAP:::=> {:0.5f}'.format(label_types[nlt], mAP[nlt])
logger.info(ptr_str)
def validate(args, net, val_data_loader, val_dataset, iteration_num):
"""Test a FPN network on an image database."""
iou_thresh = args.IOU_THRESH
num_samples = len(val_dataset)
logger.info('Validating at ' + str(iteration_num) + ' number of samples:: '+ str(num_samples))
print_time = True
val_step = 20
count = 0
torch.cuda.synchronize()
ts = time.perf_counter()
activation = torch.nn.Sigmoid().cuda()
ego_pds = []
ego_gts = []
det_boxes = []
gt_boxes_all = []
for nlt in range(args.num_label_types):
numc = args.num_classes_list[nlt]
det_boxes.append([[] for _ in range(numc)])
gt_boxes_all.append([])
net.eval()
with torch.no_grad():
for val_itr, (images, gt_boxes, gt_targets, ego_labels, batch_counts, img_indexs, wh) in enumerate(val_data_loader):
# if args.DATASET == 'ava':
# id_infos = []
# for ind in img_indexs:
# id_infos(val_data_loader.ids[ind])
torch.cuda.synchronize()
t1 = time.perf_counter()
batch_size = images.size(0)
images = images.cuda(0, non_blocking=True)
decoded_boxes, confidence, ego_preds = net(images)
ego_preds = activation(ego_preds).cpu().numpy()
ego_labels = ego_labels.numpy()
confidence = activation(confidence)
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
tf = time.perf_counter()
logger.info('Forward Time {:0.3f}'.format(tf-t1))
seq_len = gt_targets.size(1)
for b in range(batch_size):
# if args.DATASET == 'ava':
# video_id, start_frame, step_size, keyframe = id_infos[b]
for s in range(seq_len):
if args.DATASET == 'ava' and batch_counts[b, s]<1:
continue
if ego_labels[b,s]>-1:
ego_pds.append(ego_preds[b,s,:])
ego_gts.append(ego_labels[b,s])
width, height = wh[b][0], wh[b][1]
gt_boxes_batch = gt_boxes[b, s, :batch_counts[b, s],:].numpy()
gt_labels_batch = gt_targets[b, s, :batch_counts[b, s]].numpy()
decoded_boxes_frame = decoded_boxes[b, s].clone()
cc = 0
for nlt in range(args.num_label_types):
num_c = args.num_classes_list[nlt]
tgt_labels = gt_labels_batch[:,cc:cc+num_c]
# print(gt_boxes_batch.shape, tgt_labels.shape)
frame_gt = get_individual_labels(gt_boxes_batch, tgt_labels)
gt_boxes_all[nlt].append(frame_gt)
for cl_ind in range(num_c):
scores = confidence[b, s, :, cc].clone().squeeze()
cc += 1
cls_dets = utils.filter_detections(args, scores, decoded_boxes_frame)
det_boxes[nlt][cl_ind].append(cls_dets)
count += 1
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
logger.info('detections done: {:d}/{:d} time taken {:0.3f}'.format(count, num_samples, te-ts))
torch.cuda.synchronize()
ts = time.perf_counter()
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
logger.info('NMS stuff Time {:0.3f}'.format(te - tf))
logger.info('Evaluating detections for epoch number ' + str(iteration_num))
mAP, ap_all, ap_strs = evaluate.evaluate(gt_boxes_all, det_boxes, args.all_classes, iou_thresh=iou_thresh)
mAP_ego, ap_all_ego, ap_strs_ego = evaluate.evaluate_ego(np.asarray(ego_gts), np.asarray(ego_pds), args.ego_classes)
return mAP + [mAP_ego], ap_all + [ap_all_ego], ap_strs + [ap_strs_ego]