-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathword_timeline.py
219 lines (200 loc) · 10.5 KB
/
word_timeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import re
import ujson
from collections import defaultdict, OrderedDict
import numpy as np
from events_classifier import EventClassifier
from max_heap import MaxHeap
from models_manager import Method
from word2vec_wiki_model import Word2VecWikiModel
min_year = 1981
max_year = 2015
all_years = list(range(min_year, max_year + 1))
class WordOnthology(object):
def __init__(self, models_manager, knn_threshold, w2v_threshold, num_of_neighbors, support_events=False,
global_model=None, transformed_temporal_models=False, limit_years_around=0):
self.knn_threshold = knn_threshold
self.w2v_threshold = w2v_threshold
self.models_manager = models_manager
self.num_of_neighbors = num_of_neighbors
event_year = ujson.load(open('data/event_year_since1980.json', encoding='utf-8'))
self.event_to_content = ujson.load(open('data/event_content_since1980.json', encoding='utf-8'))
self.event_to_text_content = ujson.load(open('data/event_text_content_since1980.json', encoding='utf-8'))
self.year_to_event = defaultdict(list)
for event, year in event_year.items():
self.year_to_event[year].append(event)
self.support_events = support_events
self.limit_years_around = limit_years_around
if support_events:
if transformed_temporal_models:
self.classifier = EventClassifier(models_manager=self.models_manager)
else:
self.classifier = EventClassifier(global_model=global_model)
self.classifier.create_classifier(train=True)
self.global_model_inner = global_model
self.transformed_temporal_models = transformed_temporal_models
def get_similar_words_per_year(self, word):
if not word:
return None
year_to_similar_words = OrderedDict()
for year in range(min_year, max_year):
similar_words = self.models_manager.most_similar_words_in_year(word, year, self.num_of_neighbors)
year_to_similar_words[year] = similar_words
return year_to_similar_words
def find_key_years(self, word, method):
"""
find key years of a given word, according to a given method (e.g. KNN, word2vec)
"""
if not word:
return None
method_threshold = self.knn_threshold if method == Method.KNN else self.w2v_threshold
year_to_sim, peaks = self.models_manager.get_scores_peaks(word, min_year, max_year, method,
threshold=method_threshold, k=self.num_of_neighbors)
return peaks
def find_key_events_by_classifier(self, word, min_classifier_score, max_events_per_year,
existing_key_years_to_events, include_score=False):
"""
find important events using our events classifier, and word2vec similarities as a filter.
'key_years_to_events' should be calculated by another method ('find_key_events_...'),
preferably with a bigger max_events_num, as we don't want to just filter an existing method.
"""
if not word:
return None
word = word.lower()
key_years_to_events = OrderedDict([(year, []) for year in all_years])
for key_year, top_events_scores in existing_key_years_to_events.items():
if not top_events_scores:
continue
# run the classifier for these events
event_to_features = {}
event_to_prev_method_score = {}
for event, score in top_events_scores:
event_to_prev_method_score[event] = float(score)
feature_vector, feature_names = self.classifier.featurize_event_word((event, word))
if feature_vector is not None:
event_to_features[event] = feature_vector
probs = list(self.classifier.classifier.classifier.predict_proba(
list(event_to_features.values()))) # probabilities for the true class
y_prob = np.array(probs)[:, 1]
top_key_events = MaxHeap(max_events_per_year)
for event_i, event in enumerate(list(event_to_features.keys())):
event_score = (y_prob[event_i] * 4 + event_to_prev_method_score[event] * 6) / 10
top_key_events.add(event_score, event)
top_key_events = sorted(top_key_events.heap, reverse=True)
key_years_to_events[key_year] = [item[1] + '--' + str(round(item[0], 2)) if include_score else item[1] for
item in top_key_events if item[0] > min_classifier_score]
return key_years_to_events
def find_key_events_by_knn(self, word, max_events_per_year, years, include_score=False):
"""
find events that are closest to the given word and its nearest neighbors
"""
if not word:
return None
word = word.lower()
year_to_similar_words = self.get_similar_words_per_year(word)
key_years_to_events = OrderedDict([(year, []) for year in years])
for key_year in years:
model = self.get_model(key_year)
# find the key events from that year
top_key_events = MaxHeap(max_events_per_year)
# take the events that are most similar to the KNN
word_knn = [word] + year_to_similar_words[key_year] if year_to_similar_words[key_year] is not None else [
word]
events = self.get_relevant_events(key_year)
for e in events:
knn_similarities = [model.similarity(e, sim_word) for sim_word in word_knn
if word in self.event_to_content[e] and model.contains_all_words([e, sim_word])]
if len(knn_similarities) > 0:
similarity = np.mean(knn_similarities)
if similarity > self.knn_threshold:
top_key_events.add(similarity, e)
top_key_events = sorted(top_key_events.heap, reverse=True)
key_years_to_events[key_year] = [(item[1], str(round(item[0], 2))) if include_score else item[1] for
item in top_key_events]
return key_years_to_events
def find_key_events_by_word(self, word, max_events_per_year, years, include_score=False):
"""
find events closest to the given word
"""
if not word:
return None
word = word.lower()
key_years_to_events = OrderedDict([(year, []) for year in years])
for key_year in years:
model = self.get_model(key_year)
# find the key events from that year
top_key_events = MaxHeap(max_events_per_year)
# take the events that are most similar to the event
events = self.get_relevant_events(key_year)
for e in events:
if word in self.event_to_content[e] and model.contains_all_words([e, word]):
similarity = model.similarity(e, word)
if similarity > self.knn_threshold:
top_key_events.add(similarity, e)
top_key_events = sorted(top_key_events.heap, reverse=True)
key_years_to_events[key_year] = [item[1] + '--' + str(round(item[0], 2)) if include_score else item[1] for
item in top_key_events]
return key_years_to_events
def find_new_words_knn(self, word, years):
"""
find for each given year: words that were added since the previous year
"""
if not word:
return None
word = word.lower()
year_to_similar_words = self.get_similar_words_per_year(word)
year_to_new_words = OrderedDict()
prev_similar_words = None
for year in years:
similar_words = year_to_similar_words[year]
if prev_similar_words and similar_words is not None: # mark new words
year_to_new_words[year] = [w for w in similar_words if w not in prev_similar_words]
else:
year_to_new_words[year] = []
prev_similar_words = similar_words
return year_to_new_words
def find_events_from_wikipedia_baseline(self, word, max_events_per_year, years, include_score=False,
min_occurrences=5):
"""
find for each given year: events that contain the given word the most times
"""
if not word:
return None
word = word.lower()
key_years_to_events = OrderedDict([(year, []) for year in years])
for key_year in years:
# find the key events from that year
top_key_events = MaxHeap(max_events_per_year)
# take the events that are most similar to the event
for e in self.year_to_event[key_year]:
# count number of occurrences of the given word in the Wiki content
score = sum(1 for _ in re.finditer(r'\b%s\b' % re.escape(word), self.event_to_text_content[e].lower()))
if score > min_occurrences:
top_key_events.add(score, e)
top_key_events = sorted(top_key_events.heap, reverse=True)
key_years_to_events[key_year] = [item[1] + '--' + str(round(item[0], 2)) if include_score else item[1] for
item in top_key_events]
return key_years_to_events
def get_relevant_events(self, year):
relevant_years = [y for y in range(year, year + self.limit_years_around + 1)] + [y for y in range(
year - self.limit_years_around, year)]
return [event for year, events in self.year_to_event.items() for event in events if year in relevant_years]
def get_model(self, year=None):
"""
returns the temporal model if we're using transformed models (o.w. they won't contain events)
:param year:
:return:
"""
if year and self.transformed_temporal_models:
return self.models_manager.get_model(year)
else:
return self.global_model
@property
def global_model(self):
if not self.global_model_inner:
title_id_map = ujson.load(open('data/title_id_map.json', encoding='utf-8'))
self.global_model_inner = Word2VecWikiModel(
'data/WikipediaClean5Negative300Skip10/WikipediaClean5Negative300Skip10',
title_id_map)
if self.classifier and self.classifier.global_model is None:
self.classifier.global_model = self.global_model_inner
return self.global_model_inner