-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset_corlw.py
60 lines (48 loc) · 1.84 KB
/
dataset_corlw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
Generate utterance-language dataset for CleanUp and OSM for CoRL23-W.
"""
import random
import spot
from utils import load_from_file, save_to_file, substitute
def generate_tar_file():
"""
Convert letters to words to represent propositions in ground truth LTLs for spot.formula to work.
e.g. F & B F C -> F & blue_room F green_room
For [Gopalan et al. 18 dataset] https://github.com/h2r/language_datasets/tree/master/RSS_2018_Gopalan_et_al
"""
sub_map = {
"B": "blue_room",
"C": "green_room",
"D": "red_room",
"Y": "yellow_room",
"E": "chair_in_green_room",
"Z": "chair_in_blue_room"
}
raw_pairs = load_from_file("data/cleanup_cleaned.csv")
raw_utts, raw_true_ltls = [], []
for utt, ltl in raw_pairs:
raw_utts.append(utt)
raw_true_ltls.append(ltl)
true_ltls = substitute(raw_true_ltls, [sub_map]*len(raw_true_ltls))
pairs = [["Language Command", "LTL Formula"]]
for utt, ltl in zip(raw_utts, true_ltls):
pairs.append([utt.strip(), ltl.strip()])
save_to_file(pairs, "data/cleanup_corlw.csv")
def create_osm_dataset_corlw():
"""
To test generalization capability of LLMs, create an OSM dataset.
"""
data = load_from_file('data/osm/providence_500.csv')
data_rand = random.sample(data[:361], 50)
csv_data = [["Language Command", "LTL Formula"]]
for symbolic_ltl, utt, ltl in data_rand:
csv_data.append([utt.lower().strip(), ltl.strip()])
save_to_file(csv_data, 'data/osm/osm_corlw.csv')
# manually change all names in LTLs to lower case, connected with underscores
# check LTL formulas compatible with Spot
pairs = load_from_file('data/osm/osm_corlw.csv')
for utt, ltl in pairs:
spot.formula(ltl)
if __name__ == '__main__':
# generate_tar_file()
create_osm_dataset_corlw()