-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathquery.py
53 lines (41 loc) · 1.58 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
from gnes.flow import Flow
from helper import read_flowers, bytes2ndarray
os.environ['TEST_WORKDIR'] = '/tmp/gnes-flow-demo'
flow = (Flow(check_version=False)
.add_preprocessor(name='prep', yaml_path='yaml/prep.yml')
.add_encoder(yaml_path='yaml/incep.yml')
.add_indexer(name='vec_idx', yaml_path='yaml/vec.yml')
.add_router(name='scorer', yaml_path='yaml/score.yml')
.add_indexer(name='doc_idx', yaml_path='yaml/doc.yml'))
# checkout how the flow looks like
print(flow.build(backend=None).to_url())
num_q = 20
topk = 10
sample_rate = 0.05
# do the query
results = []
with flow.build(backend='process') as fl:
for q, r in fl.query(bytes_gen=read_flowers(sample_rate)):
q_img = q.search.query.raw_bytes
r_imgs = [k.doc.raw_bytes for k in r.search.topk_results]
r_scores = [k.score.value for k in r.search.topk_results]
results.append((q_img, r_imgs, r_scores))
if len(results) > num_q:
break
# converts raw_bytes to 64x64 thumbnails for visualization
results_v = [(bytes2ndarray(q_img), [bytes2ndarray(r) for r in r_imgs], r_scores) for q_img, r_imgs, r_scores in
results]
# plotting
import matplotlib.pyplot as plt
plt.close()
# first row: query. empty space for separation, 3rd to last: topk-results
f, ax = plt.subplots(topk + 2, num_q, figsize=(12, 8))
for q in range(num_q):
ax[0][q].imshow(results_v[q][0])
for r in range(topk):
ax[r + 2][q].imshow(results_v[q][1][r])
# do some layout things
[aa.axis('off') for a in ax for aa in a]
plt.tight_layout()
plt.show()