-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathFrequencyOfTheMostFrequentElement.cpp
63 lines (60 loc) · 1.95 KB
/
FrequencyOfTheMostFrequentElement.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Source : https://leetcode.com/problems/frequency-of-the-most-frequent-element/
// Author : Hao Chen
// Date : 2021-04-25
/*****************************************************************************************************
*
* The frequency of an element is the number of times it occurs in an array.
*
* You are given an integer array nums and an integer k. In one operation, you can choose an index of
* nums and increment the element at that index by 1.
*
* Return the maximum possible frequency of an element after performing at most k operations.
*
* Example 1:
*
* Input: nums = [1,2,4], k = 5
* Output: 3
* Explanation: Increment the first element three times and the second element two times to make nums
* = [4,4,4].
* 4 has a frequency of 3.
*
* Example 2:
*
* Input: nums = [1,4,8,13], k = 5
* Output: 2
* Explanation: There are multiple optimal solutions:
* - Increment the first element three times to make nums = [4,4,8,13]. 4 has a frequency of 2.
* - Increment the second element four times to make nums = [1,8,8,13]. 8 has a frequency of 2.
* - Increment the third element five times to make nums = [1,4,13,13]. 13 has a frequency of 2.
*
* Example 3:
*
* Input: nums = [3,9,6], k = 2
* Output: 1
*
* Constraints:
*
* 1 <= nums.length <= 10^5
* 1 <= nums[i] <= 10^5
* 1 <= k <= 10^5
******************************************************************************************************/
class Solution {
public:
int maxFrequency(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int m = 1;
int start = 0;
int i = 1;
for(; i<nums.size(); i++){
long delta = nums[i] - nums[i-1];
k -= delta * (i - start);;
if (k < 0 ) {
// remove the first one
k += (nums[i] - nums[start]) ;
start++;
}
m = max(m, i - start +1);
}
return m;
}
};