-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
215 lines (193 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from tqdm import trange
import torch
from torch.utils.data import DataLoader
from logger import Logger
from modules.model import GeneratorFullModel, DiscriminatorFullModel
import modules.model as MODEL
from tqdm import tqdm
from torch.optim.lr_scheduler import MultiStepLR
from torch.nn.parallel import DistributedDataParallel as DDP
import pdb
from sync_batchnorm import DataParallelWithCallback
from evaluation.evaluation_dataset import EvaluationDataset
import numpy as np
from frames_dataset import DatasetRepeater
import torchvision.utils as vutils
import os
class EMA():
def __init__(self, model, decay):
self.model = model
self.decay = decay
self.shadow = {}
self.backup = {}
def register(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def update(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def apply_shadow(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.backup[name] = param.data
param.data = self.shadow[name]
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
def printGrad(net):
for name,params in net.named_parameters():
print("==>name: ", name, " ==>grad_requires: ",params.requires_grad," ==>max grad: ", params.grad.max(), " ==>min grad: ", params.grad.min()," ==>mean grad: ", params.grad.mean())
def CheckGrad(dic):
for name,params in dic:
print("==>name: ", name, " ==>grad_requires: ",params.requires_grad," ==>grad: ", params.grad.mean())
def train(config, generator, discriminator, kp_detector, checkpoint, log_dir, dataset, rank,device,opt,writer):
train_params = config['train_params']
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=train_params['lr_generator'], betas=(0.5, 0.999))
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=train_params['lr_discriminator'], betas=(0.5, 0.999))
optimizer_kp_detector = torch.optim.Adam(kp_detector.parameters(), lr=train_params['lr_kp_detector'], betas=(0.5, 0.999))
if checkpoint is not None:
start_epoch = Logger.load_cpk(checkpoint, generator, discriminator, kp_detector,
optimizer_generator, optimizer_discriminator,
None if train_params['lr_kp_detector'] == 0 else optimizer_kp_detector)
else:
start_epoch = 0
scheduler_generator = MultiStepLR(optimizer_generator, train_params['epoch_milestones'], gamma=train_params['gamma'],
last_epoch=start_epoch - 1)
scheduler_discriminator = MultiStepLR(optimizer_discriminator, train_params['epoch_milestones'], gamma=train_params['gamma'],
last_epoch=start_epoch - 1)
scheduler_kp_detector = MultiStepLR(optimizer_kp_detector, train_params['epoch_milestones'], gamma=train_params['gamma'],
last_epoch=-1 + start_epoch * (train_params['lr_kp_detector'] != 0))
if 'num_repeats' in train_params or train_params['num_repeats'] != 1:
dataset = DatasetRepeater(dataset, train_params['num_repeats'])
sampler = torch.utils.data.distributed.DistributedSampler(dataset,num_replicas=torch.cuda.device_count(),rank=rank)
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=False, num_workers=8, sampler=sampler, drop_last=True)
generator_full = getattr(MODEL,opt.GFM)(kp_detector, generator, discriminator, train_params,opt)
discriminator_full = DiscriminatorFullModel(kp_detector, generator, discriminator, train_params)
# if torch.cuda.is_available():
# generator_full = DataParallelWithCallback(generator_full, device_ids=device_ids)
# discriminator_full = DataParallelWithCallback(discriminator_full, device_ids=device_ids)
test_dataset = EvaluationDataset(dataroot='/data/fhongac/origDataset/vox1_frames',size = [512,512],pairs_list='data/vox_evaluation_v2.csv')
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size = 2,
shuffle=False,
num_workers=4)
#copy net_g weight
# ema = EMA(generator, decay=0.5**(32 / (10 * 1000)))
# ema.register()
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'], checkpoint_freq=train_params['checkpoint_freq']) as logger:
for epoch in trange(start_epoch, train_params['num_epochs']):
#parallel
sampler.set_epoch(epoch)
total = len(dataloader)
epoch_train_loss = 0
generator.train(), discriminator.train(), kp_detector.train()
with tqdm(total=total) as par:
for i,x in enumerate(dataloader):
# print(generator.module.gau.to_q_gate[0].weight())
x['source'] = x['source'].to(device)
x['driving'] = x['driving'].to(device)
if opt.linear_grow_mb_weight:
weight = (total*epoch+i)/5000 if (total*epoch+i)/5000<1 else 1
else:
weight = 1
losses_generator, generated = generator_full(x,weight,epoch=epoch)
# print(generated['Fwarp'].mean().item(),generated['Fwarp'].min().item(),generated['Fwarp'].max().item())
loss_values = [val.mean() for val in losses_generator.values()]
loss = sum(loss_values)
loss.backward()
if not torch.isfinite(loss).item():
optimizer_generator.zero_grad()
optimizer_kp_detector.zero_grad()
print('NaN=============')
else:
# printGrad(generator)
# printGrad(kp_detector)
torch.nn.utils.clip_grad_norm_(generator.parameters(), max_norm=10, norm_type=2)
torch.nn.utils.clip_grad_norm_(kp_detector.parameters(), max_norm=10, norm_type=2)
optimizer_generator.step()
optimizer_generator.zero_grad()
optimizer_kp_detector.step()
optimizer_kp_detector.zero_grad()
epoch_train_loss+=loss.item()
if train_params['loss_weights']['generator_gan'] != 0:
optimizer_discriminator.zero_grad()
losses_discriminator = discriminator_full(x, generated)
loss_values = [val.mean() for val in losses_discriminator.values()]
loss = sum(loss_values)
loss.backward()
optimizer_discriminator.step()
optimizer_discriminator.zero_grad()
else:
losses_discriminator = {}
losses_generator.update(losses_discriminator)
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()}
for k,v in losses.items():
writer.add_scalar(k, v, total*epoch+i)
logger.log_iter(losses=losses)
# generator_full.updateMB()
par.update(1)
epoch_train_loss = epoch_train_loss/total
if (epoch + 1) % train_params['checkpoint_freq'] == 0:
# ema.apply_shadow()
# # evaluate
# ema.restore()
writer.add_scalar('epoch_train_loss', epoch_train_loss, epoch)
try:
torch.save(generator_full.mb.mb_item, os.path.join(log_dir, '%s-mb.pt' % str(epoch).zfill(8)))
except Exception as e:
print(e)
scheduler_generator.step()
scheduler_discriminator.step()
scheduler_kp_detector.step()
logger.log_epoch(epoch, {'generator': generator,
'discriminator': discriminator,
'kp_detector': kp_detector,
'optimizer_generator': optimizer_generator,
'optimizer_discriminator': optimizer_discriminator,
'optimizer_kp_detector': optimizer_kp_detector}, inp=x, out=generated)
generator.eval(), discriminator.eval(), kp_detector.eval()
if False and (epoch + 1) % train_params['checkpoint_freq'] == 0:
epoch_eval_loss = 0
for i, data in tqdm(enumerate(test_dataloader)):
data['source'] = data['source'].cuda()
data['driving'] = data['driving'].cuda()
losses_generator, generated = generator_full(data)
loss_values = [val.mean() for val in losses_generator.values()]
loss = sum(loss_values)
epoch_eval_loss+=loss.item()
epoch_eval_loss = epoch_eval_loss/len(test_dataloader)
writer.add_scalar('epoch_eval_loss', epoch_eval_loss, epoch)
try:
source = data['source'][0:1]
driving = data['driving'][0:1]
prediction = generated['prediction'][0:1]
rst = torch.cat((source,driving,prediction),0)
img_grid = vutils.make_grid(rst, normalize=True, scale_each=True, nrow=3) # normalize进行归一化处理
writer.add_image("source-driving-prediction",img_grid, global_step=epoch,dataformats='CHW')
except Exception as e:
print(e)
for key in generated:
if 'visual' in key:
try:
value = generated[key]
l = len(value.shape)
if l==2:
n,d=value.shape
visualization = value.view(n,1,int(np.sqrt(d)),int(np.sqrt(d)))
if l==4:
bs,c,w,h=value.shape
visualization = value[0:1].permute(1,0,2,3)
img_grid = vutils.make_grid(visualization, normalize=True, scale_each=True, nrow=16) # normalize进行归一化处理
writer.add_image(key, img_grid, global_step=epoch)
print("Tensorboard saves {}".format(key))
except Exception as e:
print(e)