forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.Rmd
676 lines (476 loc) · 24.4 KB
/
transform.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
---
layout: default
title: Data transformation
output: bookdown::html_chapter
---
```{r setup, include=FALSE}
library(dplyr)
library(nycflights13)
source("common.R")
```
# Data transformation {#transform}
When working with data you must:
* Figure out what you want to do.
* Describe those tasks in the form of a computer program.
* Execute the program.
The dplyr package makes these steps fast and easy:
* By constraining your options, it simplifies how you can think about common data manipulation tasks.
* It provides simple "verbs", functions that correspond to the most common data manipulation tasks, to help you translate those thoughts into code.
* It uses efficient data storage backends, so you spend less time waiting for the computer.
Dplyr aims to provide a function for each basic verb of data manipulation:
* `filter()` (and `slice()`)
* `arrange()`
* `select()` (and `rename()`)
* `mutate()` (and `transmute()`)
* `summarise()`
* `group_by()`
## Data: nycflights13
To explore the basic data manipulation verbs of dplyr, we'll start with the built in
`nycflights13` data frame. This dataset contains all `r nrow(nycflights13::flights)` flights that departed from New York City in 2013. The data comes from the US [Bureau of Transportation Statistics](http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0), and is documented in `?nycflights13`
```{r}
library(nycflights13)
dim(flights)
head(flights)
```
dplyr can work with data frames as is, but if you're dealing with large data, it's worthwhile to convert them to a `tbl_df`: this is a wrapper around a data frame that won't accidentally print a lot of data to the screen.
## Filter rows with `filter()`
`filter()` allows you to select a subset of rows in a data frame. The first argument is the name of the data frame. The second and subsequent arguments are the expressions that filter the data frame:
For example, we can select all flights on January 1st with:
```{r}
filter(flights, month == 1, day == 1)
```
This is equivalent to the more verbose code in base R:
```{r, eval = FALSE}
flights[flights$month == 1 & flights$day == 1, ]
```
`filter()` works similarly to `subset()` except that you can give it any number of filtering conditions, which are joined together with `&` (not `&&` which is easy to do accidentally!). You can also use other boolean operators:
```{r, eval = FALSE}
filter(flights, month == 1 | month == 2)
```
To select rows by position, use `slice()`:
```{r}
slice(flights, 1:10)
```
### Missing values
* Why `NA == NA` is not `TRUE`
* Why default is `na.rm = FALSE`.
## Arrange rows with `arrange()`
`arrange()` works similarly to `filter()` except that instead of filtering or selecting rows, it reorders them. It takes a data frame, and a set of column names (or more complicated expressions) to order by. If you provide more than one column name, each additional column will be used to break ties in the values of preceding columns:
```{r}
arrange(flights, year, month, day)
```
Use `desc()` to order a column in descending order:
```{r}
arrange(flights, desc(arr_delay))
```
## Select columns with `select()`
Often you work with large datasets with many columns but only a few are actually of interest to you. `select()` allows you to rapidly zoom in on a useful subset using operations that usually only work on numeric variable positions:
```{r}
# Select columns by name
select(flights, year, month, day)
# Select all columns between year and day (inclusive)
select(flights, year:day)
# Select all columns except those from year to day (inclusive)
select(flights, -(year:day))
```
This function works similarly to the `select` argument in `base::subset()`. Because the dplyr philosophy is to have small functions that do one thing well, it's its own function in dplyr.
There are a number of helper functions you can use within `select()`, like `starts_with()`, `ends_with()`, `matches()` and `contains()`. These let you quickly match larger blocks of variables that meet some criterion. See `?select` for more details.
You can rename variables with `select()` by using named arguments:
```{r}
select(flights, tail_num = tailnum)
```
But because `select()` drops all the variables not explicitly mentioned, it's not that useful. Instead, use `rename()`:
```{r}
rename(flights, tail_num = tailnum)
```
## Add new variable with `mutate()`
Besides selecting sets of existing columns, it's often useful to add new columns that are functions of existing columns. This is the job of `mutate()`:
```{r}
mutate(flights,
gain = arr_delay - dep_delay,
speed = distance / air_time * 60)
```
Note that you can refer to columns that you've just created:
```{r}
mutate(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)
)
```
If you only want to keep the new variables, use `transmute()`:
```{r}
transmute(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)
)
```
## Summarise values with `summarise()`
The last verb is `summarise()`. It collapses a data frame to a single row (this is exactly equivalent to `plyr::summarise()`):
```{r}
summarise(flights,
delay = mean(dep_delay, na.rm = TRUE))
```
Below, we'll see how this verb can be very useful.
## Commonalities
You may have noticed that the syntax and function of all these verbs are very similar:
* The first argument is a data frame.
* The subsequent arguments describe what to do with the data frame. Notice that you can refer
to columns in the data frame directly without using `$`.
* The result is a new data frame
Together these properties make it easy to chain together multiple simple steps to achieve a complex result.
These five functions provide the basis of a language of data manipulation. At the most basic level, you can only alter a tidy data frame in five useful ways: you can reorder the rows (`arrange()`), pick observations and variables of interest (`filter()` and `select()`), add new variables that are functions of existing variables (`mutate()`), or collapse many values to a summary (`summarise()`). The remainder of the language comes from applying the five functions to different types of data. For example, I'll discuss how these functions work with grouped data.
## Grouped operations
These verbs are useful on their own, but they become really powerful when you apply them to groups of observations within a dataset. In dplyr, you do this by with the `group_by()` function. It breaks down a dataset into specified groups of rows. When you then apply the verbs above on the resulting object they'll be automatically applied "by group". Most importantly, all this is achieved by using the same exact syntax you'd use with an ungrouped object.
Grouping affects the verbs as follows:
* grouped `select()` is the same as ungrouped `select()`, except that
grouping variables are always retained.
* grouped `arrange()` orders first by the grouping variables
* `mutate()` and `filter()` are most useful in conjunction with window
functions (like `rank()`, or `min(x) == x`). They are described in detail in
the windows function vignette `vignette("window-functions")`.
* `slice()` extracts rows within each group.
* `summarise()` is powerful and easy to understand, as described in
more detail below.
In the following example, we split the complete dataset into individual planes and then summarise each plane by counting the number of flights (`count = n()`) and computing the average distance (`dist = mean(Distance, na.rm = TRUE)`) and arrival delay (`delay = mean(ArrDelay, na.rm = TRUE)`). We then use ggplot2 to display the output.
```{r, warning = FALSE, message = FALSE, fig.width = 6}
library(ggplot2)
by_tailnum <- group_by(flights, tailnum)
delay <- summarise(by_tailnum,
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))
delay <- filter(delay, count > 20, dist < 2000)
# Interestingly, the average delay is only slightly related to the
# average distance flown by a plane.
ggplot(delay, aes(dist, delay)) +
geom_point(aes(size = count), alpha = 1/2) +
geom_smooth() +
scale_size_area()
```
You use `summarise()` with __aggregate functions__, which take a vector of values and return a single number. There are many useful examples of such functions in base R like `min()`, `max()`, `mean()`, `sum()`, `sd()`, `median()`, and `IQR()`. dplyr provides a handful of others:
* `n()`: the number of observations in the current group
* `n_distinct(x)`:the number of unique values in `x`.
* `first(x)`, `last(x)` and `nth(x, n)` - these work
similarly to `x[1]`, `x[length(x)]`, and `x[n]` but give you more control
over the result if the value is missing.
For example, we could use these to find the number of planes and the number of flights that go to each possible destination:
```{r}
destinations <- group_by(flights, dest)
summarise(destinations,
planes = n_distinct(tailnum),
flights = n()
)
```
When used with numeric functions, `TRUE` is converted to 1 and `FALSE` to 0. This makes `sum()` and `mean()` particularly useful: `sum(x)` gives the number of `TRUE`s in `x`, and `mean(x)` gives the proportion.
When you group by multiple variables, each summary peels off one level of the grouping. That makes it easy to progressively roll-up a dataset:
```{r}
daily <- group_by(flights, year, month, day)
(per_day <- summarise(daily, flights = n()))
(per_month <- summarise(per_day, flights = sum(flights)))
(per_year <- summarise(per_month, flights = sum(flights)))
```
However you need to be careful when progressively rolling up summaries like this: it's ok for sums and counts, but you need to think about weighting for means and variances (it's not possible to do this exactly for medians).
## Piping
The dplyr API is functional in the sense that function calls don't have side-effects. You must always save their results. This doesn't lead to particularly elegant code, especially if you want to do many operations at once. You either have to do it step-by-step:
```{r, eval = FALSE}
a1 <- group_by(flights, year, month, day)
a2 <- select(a1, arr_delay, dep_delay)
a3 <- summarise(a2,
arr = mean(arr_delay, na.rm = TRUE),
dep = mean(dep_delay, na.rm = TRUE))
a4 <- filter(a3, arr > 30 | dep > 30)
```
Or if you don't want to save the intermediate results, you need to wrap the function calls inside each other:
```{r}
filter(
summarise(
select(
group_by(flights, year, month, day),
arr_delay, dep_delay
),
arr = mean(arr_delay, na.rm = TRUE),
dep = mean(dep_delay, na.rm = TRUE)
),
arr > 30 | dep > 30
)
```
This is difficult to read because the order of the operations is from inside to out. Thus, the arguments are a long way away from the function. To get around this problem, dplyr provides the `%>%` operator. `x %>% f(y)` turns into `f(x, y)` so you can use it to rewrite multiple operations that you can read left-to-right, top-to-bottom:
```{r, eval = FALSE}
flights %>%
group_by(year, month, day) %>%
select(arr_delay, dep_delay) %>%
summarise(
arr = mean(arr_delay, na.rm = TRUE),
dep = mean(dep_delay, na.rm = TRUE)
) %>%
filter(arr > 30 | dep > 30)
```
## Creating
`data_frame()` is a nice way to create data frames. It encapsulates best practices for data frames:
* It never changes an input's type (i.e., no more `stringsAsFactors = FALSE`!).
```{r}
data.frame(x = letters) %>% sapply(class)
data_frame(x = letters) %>% sapply(class)
```
This makes it easier to use with list-columns:
```{r}
data_frame(x = 1:3, y = list(1:5, 1:10, 1:20))
```
List-columns are most commonly created by `do()`, but they can be useful to
create by hand.
* It never adjusts the names of variables:
```{r}
data.frame(`crazy name` = 1) %>% names()
data_frame(`crazy name` = 1) %>% names()
```
* It evaluates its arguments lazily and sequentially:
```{r}
data_frame(x = 1:5, y = x ^ 2)
```
* It adds the `tbl_df()` class to the output so that if you accidentally print a large
data frame you only get the first few rows.
```{r}
data_frame(x = 1:5) %>% class()
```
* It changes the behaviour of `[` to always return the same type of object:
subsetting using `[` always returns a `tbl_df()` object; subsetting using
`[[` always returns a column.
You should be aware of one case where subsetting a `tbl_df()` object
will produce a different result than a `data.frame()` object:
```{r}
df <- data.frame(a = 1:2, b = 1:2)
str(df[, "a"])
tbldf <- tbl_df(df)
str(tbldf[, "a"])
```
* It never uses `row.names()`. The whole point of tidy data is to
store variables in a consistent way. So it never stores a variable as
special attribute.
* It only recycles vectors of length 1. This is because recycling vectors of greater lengths
is a frequent source of bugs.
### Coercion
To complement `data_frame()`, dplyr provides `as_data_frame()` to coerce lists into data frames. It does two things:
* It checks that the input list is valid for a data frame, i.e. that each element
is named, is a 1d atomic vector or list, and all elements have the same
length.
* It sets the class and attributes of the list to make it behave like a data frame.
This modification does not require a deep copy of the input list, so it's
very fast.
This is much simpler than `as.data.frame()`. It's hard to explain precisely what `as.data.frame()` does, but it's similar to `do.call(cbind, lapply(x, data.frame))` - i.e. it coerces each component to a data frame and then `cbinds()` them all together. Consequently `as_data_frame()` is much faster than `as.data.frame()`:
```{r}
l2 <- replicate(26, sample(100), simplify = FALSE)
names(l2) <- letters
microbenchmark::microbenchmark(
as_data_frame(l2),
as.data.frame(l2)
)
```
The speed of `as.data.frame()` is not usually a bottleneck when used interactively, but can be a problem when combining thousands of messy inputs into one tidy data frame.
### tbl_dfs vs data.frames
There are three key differences between tbl_dfs and data.frames:
* When you print a tbl_df, it only shows the first ten rows and all the
columns that fit on one screen. It also prints an abbreviated description
of the column type:
```{r}
data_frame(x = 1:1000)
```
You can control the default appearance with options:
* `options(dplyr.print_max = n, dplyr.print_min = m)`: if more than `n`
rows print `m` rows. Use `options(dplyr.print_max = Inf)` to always
show all rows.
* `options(dply.width = Inf)` will always print all columns, regardless
of the width of the screen.
* When you subset a tbl\_df with `[`, it always returns another tbl\_df.
Contrast this with a data frame: sometimes `[` returns a data frame and
sometimes it just returns a single column:
```{r}
df1 <- data.frame(x = 1:3, y = 3:1)
class(df1[, 1:2])
class(df1[, 1])
df2 <- data_frame(x = 1:3, y = 3:1)
class(df2[, 1:2])
class(df2[, 1])
```
To extract a single column it's use `[[` or `$`:
```{r}
class(df2[[1]])
class(df2$x)
```
* When you extract a variable with `$`, tbl\_dfs never do partial
matching. They'll throw an error if the column doesn't exist:
```{r, error = TRUE}
df <- data.frame(abc = 1)
df$a
df2 <- data_frame(abc = 1)
df2$a
```
## Two-table verbs
It's rare that a data analysis involves only a single table of data. In practice, you'll normally have many tables that contribute to an analysis, and you need flexible tools to combine them. In dplyr, there are three families of verbs that work with two tables at a time:
* Mutating joins, which add new variables to one table from matching rows in
another.
* Filtering joins, which filter observations from one table based on whether or
not they match an observation in the other table.
* Set operations, which combine the observations in the data sets as if they
were set elements.
(This discussion assumes that you have [tidy data](http://www.jstatsoft.org/v59/i10/), where the rows are observations and the columns are variables. If you're not familiar with that framework, I'd recommend reading up on it first.)
All two-table verbs work similarly. The first two arguments are `x` and `y`, and provide the tables to combine. The output is always a new table with the same type as `x`.
### Mutating joins
Mutating joins allow you to combine variables from multiple tables. For example, take the nycflights13 data. In one table we have flight information with an abbreviation for carrier, and in another we have a mapping between abbreviations and full names. You can use a join to add the carrier names to the flight data:
```{r, warning = FALSE}
library("nycflights13")
# Drop unimportant variables so it's easier to understand the join results.
flights2 <- flights %>% select(year:day, hour, origin, dest, tailnum, carrier)
flights2 %>%
left_join(airlines)
```
#### Controlling how the tables are matched
As well as `x` and `y`, each mutating join takes an argument `by` that controls which variables are used to match observations in the two tables. There are a few ways to specify it, as I illustrate below with various tables from nycflights13:
* `NULL`, the default. dplyr will will use all variables that appear in
both tables, a __natural__ join. For example, the flights and
weather tables match on their common variables: year, month, day, hour and
origin.
```{r}
flights2 %>% left_join(weather)
```
* A character vector, `by = "x"`. Like a natural join, but uses only
some of the common variables. For example, `flights` and `planes` have
`year` columns, but they mean different things so we only want to join by
`tailnum`.
```{r}
flights2 %>% left_join(planes, by = "tailnum")
```
Note that the year columns in the output are disambiguated with a suffix.
* A named character vector: `by = c("x" = "a")`. This will
match variable `x` in table `x` to variable `a` in table `b`. The
variables from use will be used in the output.
Each flight has an origin and destination `airport`, so we need to specify
which one we want to join to:
```{r}
flights2 %>% left_join(airports, c("dest" = "faa"))
flights2 %>% left_join(airports, c("origin" = "faa"))
```
#### Types of join
There are four types of mutating join, which differ in their behaviour when a match is not found. We'll illustrate each with a simple example:
```{r}
(df1 <- data_frame(x = c(1, 2), y = 2:1))
(df2 <- data_frame(x = c(1, 3), a = 10, b = "a"))
```
* `inner_join(x, y)` only includes observations that match in both `x` and `y`.
```{r}
df1 %>% inner_join(df2) %>% knitr::kable()
```
* `left_join(x, y)` includes all observations in `x`, regardless of whether
they match or not. This is the most commonly used join because it ensures
that you don't lose observations from your primary table.
```{r}
df1 %>% left_join(df2)
```
* `right_join(x, y)` includes all observations in `y`. It's equivalent to
`left_join(y, x)`, but the columns will be ordered differently.
```{r}
df1 %>% right_join(df2)
df2 %>% left_join(df1)
```
* `full_join()` includes all observations from `x` and `y`.
```{r}
df1 %>% full_join(df2)
```
The left, right and full joins are collectively know as __outer joins__. When a row doesn't match in an outer join, the new variables are filled in with missing values.
#### Observations
While mutating joins are primarily used to add new variables, they can also generate new observations. If a match is not unique, a join will add all possible combinations (the Cartesian product) of the matching observations:
```{r}
df1 <- data_frame(x = c(1, 1, 2), y = 1:3)
df2 <- data_frame(x = c(1, 1, 2), z = c("a", "b", "a"))
df1 %>% left_join(df2)
```
### Filtering joins
Filtering joins match obserations in the same way as mutating joins, but affect the observations, not the variables. There are two types:
* `semi_join(x, y)` __keeps__ all observations in `x` that have a match in `y`.
* `anti_join(x, y)` __drops__ all observations in `x` that have a match in `y`.
These are most useful for diagnosing join mismatches. For example, there are many flights in the nycflights13 dataset that don't have a matching tail number in the planes table:
```{r}
library("nycflights13")
flights %>%
anti_join(planes, by = "tailnum") %>%
count(tailnum, sort = TRUE)
```
If you're worried about what observations your joins will match, start with a `semi_join()` or `anti_join()`. `semi_join()` and `anti_join()` never duplicate; they only ever remove observations.
```{r}
df1 <- data_frame(x = c(1, 1, 3, 4), y = 1:4)
df2 <- data_frame(x = c(1, 1, 2), z = c("a", "b", "a"))
# Four rows to start with:
df1 %>% nrow()
# And we get four rows after the join
df1 %>% inner_join(df2, by = "x") %>% nrow()
# But only two rows actually match
df1 %>% semi_join(df2, by = "x") %>% nrow()
```
### Set operations
The final type of two-table verb is set operations. These expect the `x` and `y` inputs to have the same variables, and treat the observations like sets:
* `intersect(x, y)`: return only observations in both `x` and `y`
* `union(x, y)`: return unique observations in `x` and `y`
* `setdiff(x, y)`: return observations in `x`, but not in `y`.
Given this simple data:
```{r}
(df1 <- data_frame(x = 1:2, y = c(1L, 1L)))
(df2 <- data_frame(x = 1:2, y = 1:2))
```
The four possibilities are:
```{r}
intersect(df1, df2)
# Note that we get 3 rows, not 4
union(df1, df2)
setdiff(df1, df2)
setdiff(df2, df1)
```
### Databases
Each two-table verb has a straightforward SQL equivalent:
| R | SQL
|------------------|--------
| `inner_join()` | `SELECT * FROM x JOIN y ON x.a = y.a`
| `left_join()` | `SELECT * FROM x LEFT JOIN y ON x.a = y.a`
| `right_join()` | `SELECT * FROM x RIGHT JOIN y ON x.a = y.a`
| `full_join()` | `SELECT * FROM x FULL JOIN y ON x.a = y.a`
| `semi_join()` | `SELECT * FROM x WHERE EXISTS (SELECT 1 FROM y WHERE x.a = y.a)`
| `anti_join()` | `SELECT * FROM x WHERE NOT EXISTS (SELECT 1 FROM y WHERE x.a = y.a)`
| `intersect(x, y)`| `SELECT * FROM x INTERSECT SELECT * FROM y`
| `union(x, y)` | `SELECT * FROM x UNION SELECT * FROM y`
| `setdiff(x, y)` | `SELECT * FROM x EXCEPT SELECT * FROM y`
`x` and `y` don't have to be tables in the same database. If you specify `copy = TRUE`, dplyr will copy the `y` table into the same location as the `x` variable. This is useful if you've downloaded a summarised dataset and determined a subset of interest that you now want the full data for. You can use `semi_join(x, y, copy = TRUE)` to upload the indices of interest to a temporary table in the same database as `x`, and then perform a efficient semi join in the database.
If you're working with large data, it maybe also be helpful to set `auto_index = TRUE`. That will automatically add an index on the join variables to the temporary table.
### Coercion rules
When joining tables, dplyr is a little more conservative than base R about the types of variable that it considers equivalent. This is mostly likely to surprise if you're working factors:
* Factors with different levels are coerced to character with a warning:
```{r}
df1 <- data_frame(x = 1, y = factor("a"))
df2 <- data_frame(x = 2, y = factor("b"))
full_join(df1, df2) %>% str()
```
* Factors with the same levels in a different order are coerced to character
with a warning:
```{r}
df1 <- data_frame(x = 1, y = factor("a", levels = c("a", "b")))
df2 <- data_frame(x = 2, y = factor("b", levels = c("b", "a")))
full_join(df1, df2) %>% str()
```
* Factors are preserved only if the levels match exactly:
```{r}
df1 <- data_frame(x = 1, y = factor("a", levels = c("a", "b")))
df2 <- data_frame(x = 2, y = factor("b", levels = c("a", "b")))
full_join(df1, df2) %>% str()
```
* A factor and a character are coerced to character with a warning:
```{r}
df1 <- data_frame(x = 1, y = "a")
df2 <- data_frame(x = 2, y = factor("a"))
full_join(df1, df2) %>% str()
```
Otherwise logicals will be silently upcast to integer, and integer to numeric, but coercing to character will raise an error:
```{r, error = TRUE, purl = FALSE}
df1 <- data_frame(x = 1, y = 1L)
df2 <- data_frame(x = 2, y = 1.5)
full_join(df1, df2) %>% str()
df1 <- data_frame(x = 1, y = 1L)
df2 <- data_frame(x = 2, y = "a")
full_join(df1, df2) %>% str()
```