forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Index.h
199 lines (157 loc) · 6.09 KB
/
Index.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the CC-by-NC license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved
// -*- c++ -*-
#ifndef FAISS_INDEX_H
#define FAISS_INDEX_H
#include <cstdio>
#include <typeinfo>
#include <string>
#include <sstream>
/**
* @namespace faiss
*
* Throughout the library, vectors are provided as float * pointers.
* Most algorithms can be optimized when several vectors are processed
* (added/searched) together in a batch. In this case, they are passed
* in as a matrix. When n vectors of size d are provided as float * x,
* component j of vector i is
*
* x[ i * d + j ]
*
* where 0 <= i < n and 0 <= j < d. In other words, matrices are
* always compact. When specifying the size of the matrix, we call it
* an n*d matrix, which implies a row-major storage.
*/
namespace faiss {
/// Some algorithms support both an inner product vetsion and a L2 search version.
enum MetricType {
METRIC_INNER_PRODUCT = 0,
METRIC_L2 = 1,
};
/// Forward declarations see AuxIndexStructures.h
struct IDSelector;
struct RangeSearchResult;
/** Abstract structure for an index
*
* Supports adding vertices and searching them.
*
* Currently only asymmetric queries are supported:
* database-to-database queries are not implemented.
*/
struct Index {
std::string index_typename;
typedef long idx_t; ///< all indices are this type
int d; ///< vector dimension
idx_t ntotal; ///< total nb of indexed vectors
bool verbose; ///< verbosity level
/// set if the Index does not require training, or if training is done already
bool is_trained;
/// type of metric this index uses for search
MetricType metric_type;
explicit Index (idx_t d = 0, MetricType metric = METRIC_INNER_PRODUCT):
index_typename ("Undefined Index typename"),
d(d),
ntotal(0),
verbose(false),
is_trained(true),
metric_type (metric) {}
virtual ~Index () { }
/** Perform training on a representative set of vectors
*
* @param n nb of training vectors
* @param x training vecors, size n * d
*/
virtual void train (idx_t n, const float *x) {
// does nothing by default
}
/** Add n vectors of dimension d to the index.
*
* Vectors are implicitly assigned labels ntotal .. ntotal + n - 1
* This function slices the input vectors in chuncks smaller than
* blocksize_add and calls add_core.
* @param x input matrix, size n * d
*/
virtual void add (idx_t n, const float *x) = 0;
/** Same as add, but stores xids instead of sequential ids.
*
* The default implementation fails with an assertion, as it is
* not supported by all indexes.
*
* @param xids if non-null, ids to store for the vectors (size n)
*/
virtual void add_with_ids (idx_t n, const float * x, const long *xids);
/** query n vectors of dimension d to the index.
*
* return at most k vectors. If there are not enough results for a
* query, the result array is padded with -1s.
*
* @param x input vectors to search, size n * d
* @param labels output labels of the NNs, size n*k
* @param distances output pairwise distances, size n*k
*/
virtual void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const = 0;
/** query n vectors of dimension d to the index.
*
* return all vectors with distance < radius. Note that many
* indexes do not implement the range_search (only the k-NN search
* is mandatory).
*
* @param x input vectors to search, size n * d
* @param radius search radius
* @param result result table
*/
virtual void range_search (idx_t n, const float *x, float radius,
RangeSearchResult *result) const;
/** return the indexes of the k vectors closest to the query x.
*
* This function is identical as search but only return labels of neighbors.
* @param x input vectors to search, size n * d
* @param labels output labels of the NNs, size n*k
*/
void assign (idx_t n, const float * x, idx_t * labels, idx_t k = 1);
/// removes all elements from the database.
virtual void reset() = 0;
/** removes IDs from the index. Not supported by all indexes
*/
virtual long remove_ids (const IDSelector & sel);
/** Reconstruct a stored vector (or an approximation if lossy coding)
*
* this function may not be defined for some indexes
* @param key id of the vector to reconstruct
* @param recons reconstucted vector (size d)
*/
virtual void reconstruct (idx_t key, float * recons) const;
/** Reconstruct vectors i0 to i0 + ni - 1
*
* this function may not be defined for some indexes
* @param recons reconstucted vector (size ni * d)
*/
virtual void reconstruct_n (idx_t i0, idx_t ni, float *recons) const;
/** Computes a residual vector after indexing encoding.
*
* The residual vector is the difference between a vector and the
* reconstruction that can be decoded from its representation in
* the index. The residual can be used for multiple-stage indexing
* methods, like IndexIVF's methods.
*
* @param x input vector, size d
* @param residual output residual vector, size d
* @param key encoded index, as returned by search and assign
*/
void compute_residual (const float * x, float * residual, idx_t key) const;
/** Display the actual class name and some more info */
void display () const;
/** Return the typeName of the index (which includes main parameters */
virtual std::string get_typename () const {
return index_typename; }
virtual void set_typename () = 0 ;
};
}
#endif