-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevalho3drecons.py
312 lines (285 loc) · 12.7 KB
/
evalho3drecons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# pylint: disable=wrong-import-order,no-member,missing-module-docstring,import-error
import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt
from tqdm import tqdm
from homan import getdataset, postprocess
from homan.eval import analyze, ho3devalutils, pointmetrics
from homan.viz import renderot
import argparse
import json
import os
import pandas as pd
import trimesh
from collections import OrderedDict, defaultdict
from libyana.camutils import project
from libyana.visutils import viz2d
parser = argparse.ArgumentParser()
parser.add_argument("--root")
parser.add_argument("--frame_nb", default=10, type=int)
parser.add_argument(
"--dataset",
default="ho3d",
choices=["contactpose", "ho3d", "fhb", "epic", "core50", "inhandycb"],
help="Dataset name")
parser.add_argument("--split",
default="test",
choices=["train", "val", "trainval", "test"],
help="Dataset name")
parser.add_argument("--box_mode", choices=["gt", "track"], default="gt")
parser.add_argument("--display_freq", default=1000, type=int)
parser.add_argument("--chunk_step", default=1, type=int)
args = parser.parse_args()
os.makedirs(args.root, exist_ok=True)
samples_root = os.path.join(args.root, "samples")
vid_folder = os.path.join(args.root, "test_vids")
os.makedirs(vid_folder, exist_ok=True)
all_samples = os.listdir(samples_root)
missing = []
for sample in all_samples:
sample_path = os.path.join(samples_root, sample)
if not os.path.exists(os.path.join(sample_path, "joint_fit.pt")):
missing.append(sample)
print(f"Missing {len(missing)} samples {missing} at location {samples_root}")
dataset, _ = getdataset.get_dataset(args.dataset,
split=args.split,
frame_nb=args.frame_nb,
box_mode=args.box_mode,
load_img=False,
chunk_step=args.chunk_step)
mano_faces = np.array(
trimesh.load("extra_data/mano/closed_phosa.obj", process=False).faces)
mano_faces_pt = torch.Tensor(mano_faces).cuda().unsqueeze(0)
sequences = [
"SM1", "MPM10", "MPM11", "MPM12", "MPM13", "MPM14", "SB11", "SB13", "AP10",
"AP11", "AP12", "AP13", "AP14"
]
vid_index = dataset.vid_index
seq_lens = {}
for seq in sequences:
seq_frame_nb = (vid_index[vid_index["seq_idx"] == seq].frame_nb).values[0]
seq_lens[seq] = seq_frame_nb
seq_res = defaultdict(OrderedDict)
# Collect all fitted results
for sample_str in tqdm(sorted(all_samples)):
sample_root = os.path.join(samples_root, sample_str)
res_path = os.path.join(sample_root, "joint_fit.pt")
if os.path.exists(res_path):
sample_info = dataset[int(sample_str)]
state_dict = torch.load(res_path)["state_dict"]
samples_res, seq_idx, frame_idxs = postprocess.post_process(
sample_info, state_dict, frame_nb=args.frame_nb, add_mean=False)
for sample_idx, (frame_idx,
sample_res) in enumerate(zip(frame_idxs, samples_res)):
objvertscan = dataset.obj_meshes[sample_res["obj_path"].split('/')
[-2]]['verts']
objvertscan = objvertscan - objvertscan.mean(0)
pred_objverts = objvertscan.dot(sample_res["obj_rot"]) * sample_res[
"obj_scale"] + sample_res["obj_trans"]
sample_res["obj_verts3d"] = pred_objverts
hand_roots = sample_info["hands"][0]["joints3d"][:, :1]
sample_res["hand_roots"] = hand_roots[sample_idx]
seq_res[seq_idx][frame_idx] = sample_res
all_verts, all_gt_objverts, all_joints, all_img_paths = [], [], [], []
all_hand_roots, all_pred_objverts = [], []
camextr = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])
camextrfull = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0],
[0, 0, 0, 1]])
# Ours -> HO3D
unorder_idxs = [
0, 5, 6, 7, 10, 11, 12, 17, 18, 19, 13, 14, 15, 1, 2, 3, 4, 8, 12, 16, 20
]
full_html_data = []
loss_errors = defaultdict(list)
full_idx = 0
for seq in tqdm(sequences, desc="seq"):
print(seq)
seq_frame_nb = seq_lens[seq]
interp_res = ho3devalutils.interpolate_res(seq_res[seq], seq_frame_nb)
obj_faces = dataset.get_obj_faces(seq, 0)
obj_faces_pt = torch.Tensor(obj_faces).cuda().unsqueeze(0)
seq_html_data = {}
seq_errors = defaultdict(list)
seq_frame_idx = 0
for frame_idx in tqdm(range(seq_frame_nb), desc="frame"):
# Get ground truth object vertex locations
gt_objverts = dataset.get_obj_verts_trans(seq, frame_idx).dot(camextr)
all_gt_objverts.append(gt_objverts)
# Get predicted object vertices
pred_objverts = interp_res["obj_verts3d"][frame_idx].dot(
camextr).astype(np.float32)
all_pred_objverts.append(pred_objverts)
# Compute object metric_verts2d
obj_metrics = pointmetrics.get_point_metrics(
torch.Tensor(pred_objverts).unsqueeze(0).float(),
torch.Tensor(gt_objverts).unsqueeze(0).float())
obj_dist = obj_metrics["verts_dists"][0]
obj_add = obj_metrics["add-s"][0]
loss_errors["obj_dist"].append(obj_dist)
loss_errors["obj_add-s"].append(obj_add)
seq_errors["obj_dist"].append(obj_dist)
seq_errors["obj_add-s"].append(obj_add)
# AP objects start at index 7694
if full_idx >= 7694:
loss_errors["obj_dist_unseen"].append(obj_dist)
loss_errors["add-s_unseen"].append(obj_add)
else:
loss_errors["obj_dist_seen"].append(obj_dist)
loss_errors["add-s_seen"].append(obj_add)
full_idx += 1
# Get hand root info
hand_root = dataset.get_root(seq, frame_idx).dot(camextr)
all_hand_roots.append(hand_root)
# Get hand predicted info
pred_handverts = interp_res["hand_verts3d"][frame_idx].dot(
camextr).astype(np.float32)
all_verts.append(pred_handverts)
pred_handjoints = interp_res["hand_joints3d"][frame_idx].dot(
camextr)[unorder_idxs].astype(np.float32)
all_joints.append(pred_handjoints)
hand_root_err = np.linalg.norm(pred_handjoints[0] - hand_root[0])
loss_errors["hand_root"].append(hand_root_err)
seq_errors["hand_root"].append(hand_root_err)
if frame_idx % args.display_freq == 0:
video_path = os.path.join(vid_folder,
f"rot_{seq}_{seq_frame_idx:06d}.mp4")
with torch.no_grad():
renderot.rot_render(pred_handverts.dot(camextr),
mano_faces,
pred_objverts.dot(camextr),
obj_faces,
video_path=video_path)
print(f"Saved video to {video_path}")
seq_html_data[f"rot_{seq_frame_idx:05d}_video_path"] = video_path
seq_frame_idx += 1
pred_handverts_pt = torch.Tensor(pred_handverts).cuda().unsqueeze(0)
pred_objverts_pt = torch.tensor(pred_objverts).cuda().unsqueeze(0)
inter_metrics = pointmetrics.get_inter_metrics(pred_handverts_pt,
pred_objverts_pt,
mano_faces_pt,
obj_faces_pt)
contacts = [float(val) for val in inter_metrics["has_contact"]]
loss_errors["has_contact"].extend(contacts)
seq_errors["has_contact"].extend(contacts)
loss_errors["pen_depths"].extend(inter_metrics["pen_depths"])
seq_errors["pen_depths"].extend(inter_metrics["pen_depths"])
img_path = interp_res["img_paths"][frame_idx]
all_img_paths.append(img_path)
# Render imgs in middle of sequence
vis_extent = 30
seq_frame_idxs = list(
range(max(0, seq_frame_nb // 2 - vis_extent),
min(seq_frame_nb - 1, seq_frame_nb // 2 + vis_extent)))
video_path = os.path.join(vid_folder, f"seq_{seq}_{frame_idx:06d}.mp4")
seq_hand_verts = [
interp_res["hand_verts3d"][idx] for idx in seq_frame_idxs
]
seq_obj_verts = [interp_res["obj_verts3d"][idx] for idx in seq_frame_idxs]
seq_img_paths = [interp_res["img_paths"][idx] for idx in seq_frame_idxs]
# Load and rescale images
seq_imgs = [cv2.imread(img_path)[:, :, ::-1] for img_path in seq_img_paths]
vis_scale_factor = 2
seq_imgs = [
cv2.resize(seq_img, (seq_img.shape[1] // vis_scale_factor,
seq_img.shape[0] // vis_scale_factor))
for seq_img in seq_imgs
]
seq_mano_faces = [mano_faces_pt[0] for _ in seq_frame_idxs]
seq_obj_faces = [obj_faces_pt[0] for _ in seq_frame_idxs]
camintr = seq_res[seq][0]['camintr'] / 2
with torch.no_grad():
renderot.seq_render(seq_hand_verts,
seq_mano_faces,
seq_obj_verts,
seq_obj_faces,
camintr=camintr,
imgs=np.stack(seq_imgs),
video_path=video_path)
seq_html_data["clip_video_path"] = video_path
for key, vals in seq_errors.items():
seq_html_data[key] = np.mean(vals)
full_html_data.append(seq_html_data)
loss_errors_avg = {key: np.mean(vals) for key, vals in loss_errors.items()}
print("Mean errors")
print(loss_errors_avg)
loss_errors_median = {
key: np.median(vals)
for key, vals in loss_errors.items()
}
print("Median errors")
print(loss_errors_median)
loss_errors_max = {key: np.max(vals) for key, vals in loss_errors.items()}
print("Max errors")
print(loss_errors_max)
full_html_data.insert(0, loss_errors_avg)
df_data = pd.DataFrame(full_html_data)
analyze.make_exp_html(df_data, {},
None,
os.path.join(args.root, "html"),
compact=False,
sort_loss=None,
drop_redundant=False)
ref_pred_path = "../handobjectconsist/pred.json"
with open(ref_pred_path, "r") as t_f:
ref_val = json.load(t_f)[0]
fig, axes = plt.subplots(2, 4, figsize=(4 * 3, 2 * 3))
# HO3D -> ours
reorder_idxs = [
0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20
]
# Show first
for ax_idx, show_idx in enumerate([1, -1]):
img_path = all_img_paths[show_idx]
camintr = samples_res[show_idx]["camintr"]
j3d = all_joints[show_idx][reorder_idxs]
v3d = all_verts[show_idx]
root3d = all_hand_roots[show_idx]
gt_ov3d = all_gt_objverts[show_idx]
pred_ov3d = all_pred_objverts[show_idx]
ref3d = np.array(ref_val[show_idx])[reorder_idxs]
ax = axes[ax_idx, 3]
img = cv2.imread(img_path)
ax.imshow(img)
j2d = project.proj2d(j3d, camintr, camextr=camextrfull)[0]
# j2d = project.proj2d(j3d.dot(camextr), camintr)[0]
r2d = project.proj2d(ref3d, camintr, camextr=camextrfull)[0]
v2d = project.proj2d(v3d, camintr, camextr=camextrfull)[0]
ref_ov2d = project.proj2d(gt_ov3d, camintr, camextr=camextrfull)[0]
root2d = project.proj2d(root3d, camintr, camextr=camextrfull)[0]
ax.scatter(ref_ov2d[:, 0], ref_ov2d[:, 1], s=1, c="pink", alpha=0.1)
ax.scatter(root2d[:, 0], root2d[:, 1], c="k")
ax.scatter(v2d[:, 0], v2d[:, 1], s=1, c="b", alpha=0.1)
ax.scatter(j2d[:, 0], j2d[:, 1], s=1, c="r")
ax.scatter(r2d[:, 0], r2d[:, 1], s=1, c="g")
viz2d.visualize_joints_2d(ax, j2d, joint_idxs=False)
viz2d.visualize_joints_2d(ax, r2d, joint_idxs=False)
ax = axes[ax_idx, 0]
ax.scatter(gt_ov3d[:, 0], gt_ov3d[:, 1], c="pink", s=1)
ax.scatter(pred_ov3d[:, 0], pred_ov3d[:, 1], c="cyan", s=1)
ax.scatter(v3d[:, 0], v3d[:, 1], c="purple", s=1)
ax.scatter(root3d[:, 0], root3d[:, 1], c="k")
viz2d.visualize_joints_2d(ax, j3d)
viz2d.visualize_joints_2d(ax, ref3d, alpha=0.5)
ax = axes[ax_idx, 1]
ax.scatter(j3d[:, 1], j3d[:, 2])
ax.scatter(gt_ov3d[:, 1], gt_ov3d[:, 2], c="pink", s=1)
ax.scatter(pred_ov3d[:, 1], pred_ov3d[:, 2], c="cyan", s=1)
ax.scatter(v3d[:, 1], v3d[:, 2], c="purple", s=1)
ax.scatter(root3d[:, 1], root3d[:, 2], c="k")
viz2d.visualize_joints_2d(ax, j3d[:, 1:])
viz2d.visualize_joints_2d(ax, ref3d[:, 1:], alpha=0.5)
ax = axes[ax_idx, 2]
ax.scatter(gt_ov3d[:, 0], gt_ov3d[:, 2], c="pink", s=1)
ax.scatter(pred_ov3d[:, 0], pred_ov3d[:, 2], c="cyan", s=1)
ax.scatter(v3d[:, 0], v3d[:, 2], c="pink", s=1)
ax.scatter(root3d[:, 0], root3d[:, 2], c="k")
viz2d.visualize_joints_2d(ax, j3d[:, ::2])
viz2d.visualize_joints_2d(ax, ref3d[:, ::2], alpha=0.5)
fig.savefig("hand.png")
print(len(all_joints), len(all_verts))
save_path = os.path.join(args.root, "pred.json")
ho3devalutils.dump(save_path, all_joints, all_verts)
print(f"Saved to {save_path}")