-
Notifications
You must be signed in to change notification settings - Fork 22
/
speed.py
154 lines (131 loc) · 6.38 KB
/
speed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import json
import argparse
from transformers import AutoTokenizer
import numpy as np
def speed(jsonl_file, jsonl_file_base, tokenizer, task=None, report=True):
tokenizer=AutoTokenizer.from_pretrained(tokenizer)
mt_bench_list = ["writing", "roleplay", "reasoning", "math" , "coding", "extraction", "stem", "humanities"]
data = []
with open(jsonl_file, 'r', encoding='utf-8') as file:
for line in file:
json_obj = json.loads(line)
if task=="overall":
data.append(json_obj)
elif task == "mt_bench":
if json_obj["category"] in mt_bench_list:
data.append(json_obj)
else:
if json_obj["category"] == task:
data.append(json_obj)
speeds=[]
accept_lengths_list = []
for datapoint in data:
tokens=sum(datapoint["choices"][0]['new_tokens'])
times = sum(datapoint["choices"][0]['wall_time'])
accept_lengths_list.extend(datapoint["choices"][0]['accept_lengths'])
speeds.append(tokens/times)
data = []
with open(jsonl_file_base, 'r', encoding='utf-8') as file:
for line in file:
json_obj = json.loads(line)
if task=="overall":
data.append(json_obj)
elif task == "mt_bench":
if json_obj["category"] in mt_bench_list:
data.append(json_obj)
else:
if json_obj["category"] == task:
data.append(json_obj)
total_time=0
total_token=0
speeds0=[]
for datapoint in data:
answer=datapoint["choices"][0]['turns']
tokens = 0
for i in answer:
tokens += (len(tokenizer(i).input_ids) - 1)
times = sum(datapoint["choices"][0]['wall_time'])
speeds0.append(tokens / times)
total_time+=times
total_token+=tokens
tokens_per_second = np.array(speeds).mean()
tokens_per_second_baseline = np.array(speeds0).mean()
speedup_ratio = np.array(speeds).mean()/np.array(speeds0).mean()
if report:
print("="*30, "Task: ", task, "="*30)
print("#Mean accepted tokens: ", np.mean(accept_lengths_list))
print('Tokens per second: ', tokens_per_second)
print('Tokens per second for the baseline: ', tokens_per_second_baseline)
print("Speedup ratio: ", speedup_ratio)
return tokens_per_second, tokens_per_second_baseline, speedup_ratio, accept_lengths_list
def get_single_speedup(jsonl_file, jsonl_file_base, tokenizer_path):
for subtask_name in ["mt_bench", "translation", "summarization", "qa", "math_reasoning", "rag", "overall"]:
speed(jsonl_file, jsonl_file_base, tokenizer_path, task=subtask_name)
def get_mean_speedup():
tokenizer_path="/home/xiaheming/data/pretrained_models/Vicuna/vicuna-7b-v1.3/"
jsonl_file_name = "vicuna-7b-v1.3-lade-level-5-win-7-guess-7-float16.jsonl"
jsonl_file_base_name = "vicuna-7b-v1.3-vanilla-float16-temp-0.0.jsonl"
jsonl_file_run_list = [
"../data/spec_bench/model_answer_temp0_run_1/{}".format(jsonl_file_name),
"../data/spec_bench/model_answer_temp0_run_2/{}".format(jsonl_file_name),
"../data/spec_bench/model_answer_temp0_run_3/{}".format(jsonl_file_name)
]
jsonl_file_base_run_list = [
"../data/spec_bench/model_answer_temp0_run_1/{}".format(jsonl_file_base_name),
"../data/spec_bench/model_answer_temp0_run_2/{}".format(jsonl_file_base_name),
"../data/spec_bench/model_answer_temp0_run_3/{}".format(jsonl_file_base_name)
]
for subtask_name in ["mt_bench", "translation", "summarization", "qa", "math_reasoning", "rag", "overall"]:
print("=" * 30, "Task: ", subtask_name, "=" * 30)
tokens_per_second_list = []
tokens_per_second_baseline_list = []
speedup_ratio_list = []
accept_lengths_list = []
for jsonl_file, jsonl_file_base in zip(jsonl_file_run_list, jsonl_file_base_run_list):
tokens_per_second, tokens_per_second_baseline, speedup_ratio, accept_lengths = speed(jsonl_file, jsonl_file_base, tokenizer_path, task=subtask_name, report=False)
tokens_per_second_list.append(tokens_per_second)
tokens_per_second_baseline_list.append(tokens_per_second_baseline)
speedup_ratio_list.append(speedup_ratio)
accept_lengths_list.extend(accept_lengths)
avg_accept_lengths = np.mean(accept_lengths_list)
print("#Mean accepted tokens: {}".format(avg_accept_lengths))
avg = np.mean(tokens_per_second_list)
std = np.std(tokens_per_second_list, ddof=1) # np.sqrt(( a.var() * a.size) / (a.size - 1))
print("Tokens per second: Mean result: {}, Std result: {}".format(avg, std))
avg_baseline = np.mean(tokens_per_second_baseline_list)
std_baseline = np.std(tokens_per_second_baseline_list, ddof=1) # np.sqrt(( a.var() * a.size) / (a.size - 1))
print("Tokens per second (baseline): Mean result: {}, Std result: {}".format(avg_baseline, std_baseline))
avg_speedup = np.mean(speedup_ratio_list)
std_speedup = np.std(speedup_ratio_list, ddof=1) # np.sqrt(( a.var() * a.size) / (a.size - 1))
print("Speedup ratio: Mean result: {}, Std result: {}".format(avg_speedup, std_speedup))
print("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--file-path",
default='../data/mini_bench/model_answer/vicuna-7b-v1.3-eagle-float32-temperature-0.0.jsonl',
type=str,
help="The file path of evaluated Speculative Decoding methods.",
)
parser.add_argument(
"--base-path",
default='../data/mini_bench/model_answer/vicuna-7b-v1.3-vanilla-float32-temp-0.0.jsonl',
type=str,
help="The file path of evaluated baseline.",
)
parser.add_argument(
"--tokenizer-path",
default='/data/heming/pretrained_models/vicuna-7b-v1.3/',
type=str,
help="The file path of evaluated baseline.",
)
parser.add_argument(
"--mean-report",
action="store_true",
default=False,
help="report mean speedup over different runs")
args = parser.parse_args()
if args.mean_report:
get_mean_speedup()
else:
get_single_speedup(jsonl_file=args.file_path, jsonl_file_base=args.base_path, tokenizer_path=args.tokenizer_path)