-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
313 lines (279 loc) · 9.97 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import tempfile
import numpy as np
from argparse import Namespace
from pathlib import Path
import torch
from torchvision import transforms
import PIL.Image
import scipy
import scipy.ndimage
import dlib
import imageio
import cog
from models.psp import pSp
from utils.common import tensor2im
from editings import latent_editor
"""
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
bunzip2 shape_predictor_68_face_landmarks.dat.bz2
"""
class Predictor(cog.Predictor):
def setup(self):
model_path = "/home/zhangfengda/HFGI/experiment/smiling_male_0.111_align/checkpoints/iteration_100000.pt"
ckpt = torch.load(model_path, map_location="cpu")
opts = ckpt["opts"]
opts["is_train"] = False
opts["checkpoint_path"] = model_path
opts = Namespace(**opts)
self.net = pSp(opts)
self.net.eval()
self.net.cuda()
print("Model successfully loaded!")
self.img_transforms = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
self.editor = latent_editor.LatentEditor(self.net.decoder)
# interface-GAN
interfacegan_directions = {
"age": "./editings/interfacegan_directions/age.pt",
"smile": "/home/zhangfengda/interfacegan-master/boundary_result/model_50.pth",
}
self.ganspace_pca = torch.load("./editings/ganspace_pca/ffhq_pca.pt")
self.edit_direction = {
"age": torch.load(interfacegan_directions["age"]).cuda(),
"smile": torch.load(interfacegan_directions["smile"]).cuda(),
"eyes": (54, 7, 8, 20),
"beard": (58, 7, 9, -20),
"lip": (34, 10, 11, 20),
}
@cog.input(
"image",
type=Path,
help="input facial image, which will be aligned and cropped to 256*256 first",
)
@cog.input(
"edit_attribute",
type=str,
default="smile",
options=["inversion", "age", "smile", "eyes", "lip", "beard"],
help="choose image editing option",
)
@cog.input(
"edit_degree",
type=float,
default=0,
min=-5,
max=5,
help="control the degree of editing (valid for 'age' and 'smile').",
)
def predict(self, image, edit_attribute, edit_degree):
out_path = Path(tempfile.mkdtemp()) / "out.png"
resize_dims = (256, 256)
input_path = str(image)
# for replicate, webcam input might be rgba, convert to rgb first
input = imageio.imread(input_path)
if input.shape[-1] == 4:
rgba_image = PIL.Image.open(input_path)
rgb_image = rgba_image.convert("RGB")
input_path = "rgb_input.png"
imageio.imwrite(input_path, rgb_image)
# align and crop image
input_image = run_alignment(input_path)
input_image.resize(resize_dims)
transformed_image = self.img_transforms(input_image)
x = transformed_image.unsqueeze(0).cuda()
latent_codes = get_latents(self.net, x)
# calculate the distortion map
imgs, _ = self.net.decoder(
[latent_codes[0].unsqueeze(0).cuda()],
None,
input_is_latent=True,
randomize_noise=False,
return_latents=True,
)
res = x - torch.nn.functional.interpolate(
torch.clamp(imgs, -1.0, 1.0), size=(256, 256), mode="bilinear"
)
# ADA
img_edit = torch.nn.functional.interpolate(
torch.clamp(imgs, -1.0, 1.0), size=(256, 256), mode="bilinear"
)
res_align = self.net.grid_align(torch.cat((res, img_edit), 1))
# consultation fusion
conditions = self.net.residue(res_align)
if edit_attribute == "inversion":
result, _ = self.net.decoder(
[latent_codes],
conditions,
input_is_latent=True,
randomize_noise=False,
return_latents=True,
)
else:
edit_direction = self.edit_direction[edit_attribute]
if edit_attribute in ["age", "smile"]:
img_edit, edit_latents = self.editor.apply_interfacegan(
latent_codes[0].unsqueeze(0).cuda(),
edit_direction,
factor=edit_degree,
)
else:
img_edit, edit_latents = self.editor.apply_ganspace(
latent_codes[0].unsqueeze(0).cuda(),
self.ganspace_pca,
[edit_direction],
)
result, _ = self.net.decoder(
[edit_latents],
conditions,
input_is_latent=True,
randomize_noise=False,
return_latents=True,
)
result = torch.nn.functional.interpolate(
result, size=(256, 256), mode="bilinear"
)
result = tensor2im(result[0])
PIL.Image.fromarray(np.array(result)).save(str(out_path))
PIL.Image.fromarray(np.array(result)).save("ooo.png")
return out_path
def get_landmark(filepath, predictor):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
img = dlib.load_rgb_image(filepath)
dets = detector(img, 1)
for k, d in enumerate(dets):
shape = predictor(img, d)
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
return lm
def align_face(filepath, predictor):
"""
:param filepath: str
:return: PIL Image
"""
lm = get_landmark(filepath, predictor)
lm_chin = lm[0:17] # left-right
lm_eyebrow_left = lm[17:22] # left-right
lm_eyebrow_right = lm[22:27] # left-right
lm_nose = lm[27:31] # top-down
lm_nostrils = lm[31:36] # top-down
lm_eye_left = lm[36:42] # left-clockwise
lm_eye_right = lm[42:48] # left-clockwise
lm_mouth_outer = lm[48:60] # left-clockwise
lm_mouth_inner = lm[60:68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# read image
img = PIL.Image.open(filepath)
output_size = 256
transform_size = 256
enable_padding = True
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (
int(np.rint(float(img.size[0]) / shrink)),
int(np.rint(float(img.size[1]) / shrink)),
)
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (
int(np.floor(min(quad[:, 0]))),
int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))),
)
crop = (
max(crop[0] - border, 0),
max(crop[1] - border, 0),
min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]),
)
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (
int(np.floor(min(quad[:, 0]))),
int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))),
)
pad = (
max(-pad[0] + border, 0),
max(-pad[1] + border, 0),
max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0),
)
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(
np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), "reflect"
)
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(
1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]),
)
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(
mask * 3.0 + 1.0, 0.0, 1.0
)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), "RGB")
quad += pad[:2]
# Transform.
img = img.transform(
(transform_size, transform_size),
PIL.Image.QUAD,
(quad + 0.5).flatten(),
PIL.Image.BILINEAR,
)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Return aligned image.
return img
def run_alignment(image_path):
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
aligned_image = align_face(filepath=image_path, predictor=predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def get_latents(net, x, is_cars=False):
codes = net.encoder(x)
if net.opts.start_from_latent_avg:
if codes.ndim == 2:
codes = codes + net.latent_avg.repeat(codes.shape[0], 1, 1)[:, 0, :]
else:
codes = codes + net.latent_avg.repeat(codes.shape[0], 1, 1)
if codes.shape[1] == 18 and is_cars:
codes = codes[:, :16, :]
return codes