forked from comfyanonymous/ComfyUI
-
Notifications
You must be signed in to change notification settings - Fork 11
/
model_downloader.py
635 lines (558 loc) · 40 KB
/
model_downloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
from __future__ import annotations
import collections
import logging
import operator
import os
import shutil
from functools import reduce
from itertools import chain
from os.path import join
from pathlib import Path
from typing import List, Optional, Sequence, Final, Set, MutableSequence
import tqdm
from huggingface_hub import hf_hub_download, scan_cache_dir, snapshot_download, HfFileSystem
from huggingface_hub.file_download import are_symlinks_supported
from huggingface_hub.utils import GatedRepoError, LocalEntryNotFoundError
from requests import Session
from safetensors import safe_open
from safetensors.torch import save_file
from .cli_args import args
from .cmd import folder_paths
from .cmd.folder_paths import add_model_folder_path, supported_pt_extensions # pylint: disable=import-error
from .component_model.deprecation import _deprecate_method
from .component_model.files import canonicalize_path
from .interruption import InterruptProcessingException
from .model_downloader_types import CivitFile, HuggingFile, CivitModelsGetResponse, CivitFile_, Downloadable, UrlFile
from .utils import ProgressBar, comfy_tqdm
_session = Session()
_hf_fs = HfFileSystem()
def get_filename_list_with_downloadable(folder_name: str, known_files: Optional[List[Downloadable] | KnownDownloadables] = None) -> List[str]:
if known_files is None:
known_files = _get_known_models_for_folder_name(folder_name)
existing = frozenset(folder_paths.get_filename_list(folder_name))
downloadable = frozenset() if args.disable_known_models else frozenset(str(f) for f in known_files)
return list(map(canonicalize_path, sorted(list(existing | downloadable))))
def get_or_download(folder_name: str, filename: str, known_files: Optional[List[Downloadable] | KnownDownloadables] = None) -> Optional[str]:
if known_files is None:
known_files = _get_known_models_for_folder_name(folder_name)
filename = canonicalize_path(filename)
path = folder_paths.get_full_path(folder_name, filename)
if path is None and not args.disable_known_models:
try:
# todo: should this be the first or last path?
this_model_directory = folder_paths.get_folder_paths(folder_name)[0]
known_file: Optional[HuggingFile | CivitFile] = None
for candidate in known_files:
if (canonicalize_path(str(candidate)) == filename
or canonicalize_path(candidate.filename) == filename
or filename in list(map(canonicalize_path, candidate.alternate_filenames))
or filename == canonicalize_path(candidate.save_with_filename)):
known_file = candidate
break
if known_file is None:
return path
with comfy_tqdm():
if isinstance(known_file, HuggingFile):
if known_file.save_with_filename is not None:
linked_filename = known_file.save_with_filename
elif not known_file.force_save_in_repo_id and os.path.basename(known_file.filename) != known_file.filename:
linked_filename = os.path.basename(known_file.filename)
else:
linked_filename = None
if known_file.force_save_in_repo_id or linked_filename is not None and os.path.dirname(known_file.filename) == "":
# if the known file has an overridden linked name, save it into a repo_id sub directory
# this deals with situations like
# jschoormans/controlnet-densepose-sdxl repo having diffusion_pytorch_model.safetensors
# it should be saved to controlnet-densepose-sdxl.safetensors
# since there are a bajillion diffusion_pytorch_model.safetensors, it should be downloaded by hf into jschoormans/controlnet-densepose-sdxl/diffusion_pytorch_model.safetensors
# then linked to the local folder to controlnet-densepose-sdxl.safetensors or some other canonical name
hf_destination_dir = os.path.join(this_model_directory, known_file.repo_id)
else:
hf_destination_dir = this_model_directory
# converted 16 bit files should be skipped
# todo: the file size should be replaced with a file hash
path = os.path.join(hf_destination_dir, known_file.filename)
try:
file_size = os.stat(path, follow_symlinks=True).st_size if os.path.isfile(path) else None
except:
file_size = None
if os.path.isfile(path) and file_size == known_file.size:
return path
cache_hit = False
try:
if not are_symlinks_supported():
raise PermissionError("no symlink support")
# always retrieve this from the cache if it already exists there
path = hf_hub_download(repo_id=known_file.repo_id,
filename=known_file.filename,
repo_type=known_file.repo_type,
revision=known_file.revision,
local_files_only=True,
)
logging.info(f"hf_hub_download cache hit for {known_file.repo_id}/{known_file.filename}")
if linked_filename is None:
linked_filename = known_file.filename
cache_hit = True
except (LocalEntryNotFoundError, PermissionError):
path = hf_hub_download(repo_id=known_file.repo_id,
filename=known_file.filename,
local_dir=hf_destination_dir,
repo_type=known_file.repo_type,
revision=known_file.revision,
)
if known_file.convert_to_16_bit and file_size is not None and file_size != 0:
tensors = {}
with safe_open(path, framework="pt") as f:
with tqdm.tqdm(total=len(f.keys())) as pb:
for k in f.keys():
x = f.get_tensor(k)
tensors[k] = x.half()
del x
pb.update()
# always save converted files to the destination so that the huggingface cache is not corrupted
save_file(tensors, os.path.join(hf_destination_dir, known_file.filename))
for _, v in tensors.items():
del v
logging.info(f"Converted {path} to 16 bit, size is {os.stat(path, follow_symlinks=True).st_size}")
link_successful = True
if linked_filename is not None:
destination_link = os.path.join(this_model_directory, linked_filename)
try:
os.makedirs(this_model_directory, exist_ok=True)
os.symlink(path, destination_link)
except Exception as exc_info:
logging.error("error while symbolic linking", exc_info=exc_info)
try:
os.link(path, destination_link)
except Exception as hard_link_exc:
logging.error("error while hard linking", exc_info=hard_link_exc)
if cache_hit:
shutil.copyfile(path, destination_link)
link_successful = False
if not link_successful:
logging.error(f"Failed to link file with alternative download save name in a way that is compatible with Hugging Face caching {repr(known_file)}. If cache_hit={cache_hit} is True, the file was copied into the destination.", exc_info=exc_info)
else:
url: Optional[str] = None
save_filename = known_file.save_with_filename or known_file.filename
if isinstance(known_file, CivitFile):
model_info_res = _session.get(
f"https://civitai.com/api/v1/models/{known_file.model_id}?modelVersionId={known_file.model_version_id}")
model_info: CivitModelsGetResponse = model_info_res.json()
civit_file: CivitFile_
for civit_file in chain.from_iterable(version['files'] for version in model_info['modelVersions']):
if canonicalize_path(civit_file['name']) == filename:
url = civit_file['downloadUrl']
break
elif isinstance(known_file, UrlFile):
url = known_file.url
else:
raise RuntimeError("unknown file type")
if url is None:
logging.warning(f"Could not retrieve file {str(known_file)}")
else:
destination_with_filename = join(this_model_directory, save_filename)
os.makedirs(os.path.dirname(destination_with_filename), exist_ok=True)
try:
with _session.get(url, stream=True, allow_redirects=True) as response:
total_size = int(response.headers.get("content-length", 0))
progress_bar = ProgressBar(total=total_size)
with open(destination_with_filename, "wb") as file:
for chunk in response.iter_content(chunk_size=512 * 1024):
progress_bar.update(len(chunk))
file.write(chunk)
except InterruptProcessingException:
os.remove(destination_with_filename)
path = folder_paths.get_full_path(folder_name, filename)
assert path is not None
except StopIteration:
pass
except GatedRepoError as exc_info:
exc_info.append_to_message(f"""
Visit the repository, accept the terms, and then do one of the following:
- Set the HF_TOKEN environment variable to your Hugging Face token; or,
- Login to Hugging Face in your terminal using `huggingface-cli login`
""")
raise exc_info
if path is None:
raise FileNotFoundError(f"Model in folder '{folder_name}' with filename '{filename}' not found, and no download candidates matched for the filename.")
return path
class KnownDownloadables(collections.UserList[Downloadable]):
def __init__(self, data, folder_name: Optional[str] = None):
# this should be a view
self.data = data
self._folder_name = folder_name
@property
def folder_name(self) -> str:
return self._folder_name
@folder_name.setter
def folder_name(self, value: str):
self._folder_name = value
KNOWN_CHECKPOINTS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("stabilityai/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors"),
HuggingFile("stabilityai/stable-diffusion-xl-refiner-1.0", "sd_xl_refiner_1.0.safetensors"),
HuggingFile("stabilityai/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors"),
HuggingFile("stabilityai/sdxl-turbo", "sd_xl_turbo_1.0.safetensors", show_in_ui=False),
HuggingFile("stabilityai/stable-cascade", "comfyui_checkpoints/stable_cascade_stage_b.safetensors"),
HuggingFile("stabilityai/stable-cascade", "comfyui_checkpoints/stable_cascade_stage_c.safetensors"),
HuggingFile("stabilityai/stable-cascade", "comfyui_checkpoints/stage_a.safetensors", show_in_ui=False),
HuggingFile("Comfy-Org/stable-diffusion-v1-5-archive", "v1-5-pruned-emaonly.safetensors"),
HuggingFile("Comfy-Org/stable-diffusion-v1-5-archive", "v1-5-pruned-emaonly-fp16.safetensors"),
# from https://github.com/comfyanonymous/ComfyUI_examples/tree/master/2_pass_txt2img
HuggingFile("stabilityai/stable-diffusion-2-1", "v2-1_768-ema-pruned.ckpt", show_in_ui=False),
HuggingFile("waifu-diffusion/wd-1-5-beta3", "wd-illusion-fp16.safetensors", show_in_ui=False),
HuggingFile("jomcs/NeverEnding_Dream-Feb19-2023", "CarDos Anime/cardosAnime_v10.safetensors", show_in_ui=False),
# from https://github.com/comfyanonymous/ComfyUI_examples/blob/master/area_composition/README.md
HuggingFile("ckpt/anything-v3.0", "Anything-V3.0.ckpt", show_in_ui=False),
HuggingFile("stabilityai/cosxl", "cosxl.safetensors"),
HuggingFile("stabilityai/cosxl", "cosxl_edit.safetensors"),
# latest, popular civitai models
CivitFile(133005, 357609, filename="juggernautXL_v9Rundiffusionphoto2.safetensors"),
CivitFile(112902, 351306, filename="dreamshaperXL_v21TurboDPMSDE.safetensors"),
CivitFile(139562, 344487, filename="realvisxlV40_v40Bakedvae.safetensors"),
HuggingFile("SG161222/Realistic_Vision_V6.0_B1_noVAE", "Realistic_Vision_V6.0_NV_B1_fp16.safetensors"),
HuggingFile("SG161222/Realistic_Vision_V5.1_noVAE", "Realistic_Vision_V5.1_fp16-no-ema.safetensors"),
HuggingFile("Lykon/DreamShaper", "DreamShaper_8_pruned.safetensors", save_with_filename="dreamshaper_8.safetensors", alternate_filenames=("DreamShaper_8_pruned.safetensors")),
CivitFile(7371, 425083, filename="revAnimated_v2Rebirth.safetensors"),
CivitFile(4468, 57618, filename="counterfeitV30_v30.safetensors"),
CivitFile(241415, 272376, filename="picxReal_10.safetensors"),
CivitFile(23900, 95489, filename="anyloraCheckpoint_bakedvaeBlessedFp16.safetensors"),
HuggingFile("stabilityai/stable-diffusion-3-medium", "sd3_medium.safetensors"),
HuggingFile("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors"),
HuggingFile("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp8.safetensors"),
HuggingFile("fal/AuraFlow", "aura_flow_0.1.safetensors"),
# stable audio, # uses names from https://comfyanonymous.github.io/ComfyUI_examples/audio/
HuggingFile("stabilityai/stable-audio-open-1.0", "model.safetensors", save_with_filename="stable_audio_open_1.0.safetensors"),
# hunyuandit
HuggingFile("comfyanonymous/hunyuan_dit_comfyui", "hunyuan_dit_1.0.safetensors"),
HuggingFile("comfyanonymous/hunyuan_dit_comfyui", "hunyuan_dit_1.1.safetensors"),
HuggingFile("comfyanonymous/hunyuan_dit_comfyui", "hunyuan_dit_1.2.safetensors"),
HuggingFile("lllyasviel/flux1-dev-bnb-nf4", "flux1-dev-bnb-nf4.safetensors"),
HuggingFile("lllyasviel/flux1-dev-bnb-nf4", "flux1-dev-bnb-nf4-v2.safetensors"),
HuggingFile("silveroxides/flux1-nf4-weights", "flux1-schnell-bnb-nf4.safetensors"),
HuggingFile("Lightricks/LTX-Video", "ltx-video-2b-v0.9.safetensors"),
], folder_name="checkpoints")
KNOWN_UNCLIP_CHECKPOINTS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("stabilityai/stable-cascade", "comfyui_checkpoints/stable_cascade_stage_c.safetensors"),
HuggingFile("stabilityai/stable-diffusion-2-1-unclip", "sd21-unclip-h.ckpt"),
HuggingFile("stabilityai/stable-diffusion-2-1-unclip", "sd21-unclip-l.ckpt"),
], folder_name="checkpoints")
KNOWN_IMAGE_ONLY_CHECKPOINTS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("stabilityai/stable-zero123", "stable_zero123.ckpt")
], folder_name="checkpoints")
KNOWN_UPSCALERS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("lllyasviel/Annotators", "RealESRGAN_x4plus.pth")
], folder_name="upscale_models")
KNOWN_GLIGEN_MODELS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("comfyanonymous/GLIGEN_pruned_safetensors", "gligen_sd14_textbox_pruned.safetensors", show_in_ui=False),
HuggingFile("comfyanonymous/GLIGEN_pruned_safetensors", "gligen_sd14_textbox_pruned_fp16.safetensors"),
], folder_name="gligen")
KNOWN_CLIP_VISION_MODELS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("comfyanonymous/clip_vision_g", "clip_vision_g.safetensors"),
HuggingFile("Comfy-Org/sigclip_vision_384", "sigclip_vision_patch14_384.safetensors"),
], folder_name="clip_vision")
KNOWN_LORAS: Final[KnownDownloadables] = KnownDownloadables([
CivitFile(model_id=211577, model_version_id=238349, filename="openxl_handsfix.safetensors"),
CivitFile(model_id=324815, model_version_id=364137, filename="blur_control_xl_v1.safetensors"),
CivitFile(model_id=47085, model_version_id=55199, filename="GoodHands-beta2.safetensors"),
HuggingFile("ByteDance/Hyper-SD", "Hyper-SDXL-12steps-CFG-lora.safetensors"),
HuggingFile("ByteDance/Hyper-SD", "Hyper-SD15-12steps-CFG-lora.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-Canny-dev-lora", "flux1-canny-dev-lora.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-Depth-dev-lora", "flux1-depth-dev-lora.safetensors"),
], folder_name="loras")
KNOWN_CONTROLNETS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("thibaud/controlnet-openpose-sdxl-1.0", "OpenPoseXL2.safetensors", convert_to_16_bit=True, size=2502139104),
HuggingFile("thibaud/controlnet-openpose-sdxl-1.0", "control-lora-openposeXL2-rank256.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11e_sd15_ip2p_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11e_sd15_shuffle_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11f1e_sd15_tile_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11f1p_sd15_depth_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_canny_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_inpaint_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_lineart_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_mlsd_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_normalbae_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_openpose_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_scribble_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_seg_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15_softedge_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_lora_rank128_v11p_sd15s2_lineart_anime_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11e_sd15_ip2p_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11e_sd15_shuffle_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11f1e_sd15_tile_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11f1p_sd15_depth_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_canny_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_inpaint_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_lineart_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_mlsd_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_normalbae_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_openpose_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_scribble_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_seg_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15_softedge_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11p_sd15s2_lineart_anime_fp16.safetensors"),
HuggingFile("comfyanonymous/ControlNet-v1-1_fp16_safetensors", "control_v11u_sd15_tile_fp16.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "diffusers_xl_canny_full.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "diffusers_xl_canny_mid.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "diffusers_xl_canny_small.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "diffusers_xl_depth_full.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "diffusers_xl_depth_mid.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "diffusers_xl_depth_small.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "ioclab_sd15_recolor.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_blur.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_blur_anime.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_blur_anime_beta.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_canny.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_canny_anime.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_depth.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_depth_anime.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_openpose_anime.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_openpose_anime_v2.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "kohya_controllllite_xl_scribble_anime.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_canny_128lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_canny_256lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_depth_128lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_depth_256lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_recolor_128lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_recolor_256lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_sketch_128lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sai_xl_sketch_256lora.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sargezt_xl_depth.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sargezt_xl_depth_faid_vidit.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sargezt_xl_depth_zeed.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "sargezt_xl_softedge.safetensors"),
HuggingFile("SargeZT/controlnet-sd-xl-1.0-depth-16bit-zoe", "depth-zoe-xl-v1.0-controlnet.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_diffusers_xl_canny.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_diffusers_xl_depth_midas.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_diffusers_xl_depth_zoe.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_diffusers_xl_lineart.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_diffusers_xl_openpose.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_diffusers_xl_sketch.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_xl_canny.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_xl_openpose.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "t2i-adapter_xl_sketch.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "thibaud_xl_openpose.safetensors"),
HuggingFile("lllyasviel/sd_control_collection", "thibaud_xl_openpose_256lora.safetensors"),
HuggingFile("jschoormans/controlnet-densepose-sdxl", "diffusion_pytorch_model.safetensors", save_with_filename="controlnet-densepose-sdxl.safetensors", convert_to_16_bit=True, size=2502139104),
HuggingFile("stabilityai/stable-cascade", "controlnet/canny.safetensors", save_with_filename="stable_cascade_canny.safetensors"),
HuggingFile("stabilityai/stable-cascade", "controlnet/inpainting.safetensors", save_with_filename="stable_cascade_inpainting.safetensors"),
HuggingFile("stabilityai/stable-cascade", "controlnet/super_resolution.safetensors", save_with_filename="stable_cascade_super_resolution.safetensors"),
HuggingFile("limingcv/ControlNet-Plus-Plus", "checkpoints/canny/controlnet/diffusion_pytorch_model.safetensors", save_with_filename="ControlNet-Plus-Plus_sd15_canny.safetensors", repo_type="space"),
HuggingFile("limingcv/ControlNet-Plus-Plus", "checkpoints/depth/controlnet/diffusion_pytorch_model.safetensors", save_with_filename="ControlNet-Plus-Plus_sd15_grayscale_depth.safetensors", repo_type="space"),
HuggingFile("limingcv/ControlNet-Plus-Plus", "checkpoints/hed/controlnet/diffusion_pytorch_model.bin", save_with_filename="ControlNet-Plus-Plus_sd15_hed.bin", repo_type="space"),
HuggingFile("limingcv/ControlNet-Plus-Plus", "checkpoints/lineart/controlnet/diffusion_pytorch_model.bin", save_with_filename="ControlNet-Plus-Plus_sd15_lineart.bin", repo_type="space"),
HuggingFile("limingcv/ControlNet-Plus-Plus", "checkpoints/seg/controlnet/diffusion_pytorch_model.safetensors", save_with_filename="ControlNet-Plus-Plus_sd15_ade20k_seg.safetensors", repo_type="space"),
HuggingFile("xinsir/controlnet-scribble-sdxl-1.0", "diffusion_pytorch_model.safetensors", save_with_filename="xinsir-controlnet-scribble-sdxl-1.0.safetensors"),
HuggingFile("xinsir/controlnet-canny-sdxl-1.0", "diffusion_pytorch_model.safetensors", save_with_filename="xinsir-controlnet-canny-sdxl-1.0.safetensors"),
HuggingFile("xinsir/controlnet-canny-sdxl-1.0", "diffusion_pytorch_model_V2.safetensors", save_with_filename="xinsir-controlnet-canny-sdxl-1.0_V2.safetensors"),
HuggingFile("xinsir/controlnet-openpose-sdxl-1.0", "diffusion_pytorch_model.safetensors", save_with_filename="xinsir-controlnet-openpose-sdxl-1.0.safetensors"),
HuggingFile("xinsir/anime-painter", "diffusion_pytorch_model.safetensors", save_with_filename="xinsir-anime-painter-scribble-sdxl-1.0.safetensors"),
HuggingFile("TheMistoAI/MistoLine", "mistoLine_rank256.safetensors"),
HuggingFile("xinsir/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", save_with_filename="xinsir-controlnet-union-sdxl-1.0-promax.safetensors"),
HuggingFile("xinsir/controlnet-union-sdxl-1.0", "diffusion_pytorch_model.safetensors", save_with_filename="xinsir-controlnet-union-sdxl-1.0.safetensors"),
HuggingFile("InstantX/FLUX.1-dev-Controlnet-Canny", "diffusion_pytorch_model.safetensors", save_with_filename="instantx-flux.1-dev-controlnet-canny.safetensors"),
HuggingFile("InstantX/FLUX.1-dev-Controlnet-Union", "diffusion_pytorch_model.safetensors", save_with_filename="instantx-flux.1-dev-controlnet-union.safetensors"),
HuggingFile("Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "diffusion_pytorch_model.safetensors", save_with_filename="shakker-labs-flux.1-dev-controlnet-union-pro.safetensors"),
HuggingFile("TheMistoAI/MistoLine_Flux.dev", "mistoline_flux.dev_v1.safetensors"),
HuggingFile("XLabs-AI/flux-controlnet-collections", "flux-canny-controlnet-v3.safetensors"),
HuggingFile("XLabs-AI/flux-controlnet-collections", "flux-depth-controlnet-v3.safetensors"),
HuggingFile("XLabs-AI/flux-controlnet-collections", "flux-hed-controlnet-v3.safetensors"),
HuggingFile("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", "diffusion_pytorch_model.safetensors", save_with_filename="alimama-creative-flux.1-dev-controlnet-inpainting-alpha.safetensors"),
], folder_name="controlnet")
KNOWN_DIFF_CONTROLNETS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_canny_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_depth_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_hed_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_mlsd_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_normal_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_openpose_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_scribble_fp16.safetensors"),
HuggingFile("kohya-ss/ControlNet-diff-modules", "diff_control_sd15_seg_fp16.safetensors"),
], folder_name="controlnet")
KNOWN_APPROX_VAES: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("madebyollin/taesd", "taesd_decoder.safetensors"),
HuggingFile("madebyollin/taesdxl", "taesdxl_decoder.safetensors"),
HuggingFile("madebyollin/taef1", "diffusion_pytorch_model.safetensors", save_with_filename="taef1_decoder.safetensors"),
HuggingFile("madebyollin/taesd3", "diffusion_pytorch_model.safetensors", save_with_filename="taesd3_decoder.safetensors"),
], folder_name="vae_approx")
KNOWN_VAES: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("stabilityai/sdxl-vae", "sdxl_vae.safetensors"),
HuggingFile("stabilityai/sd-vae-ft-mse-original", "vae-ft-mse-840000-ema-pruned.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-schnell", "ae.safetensors"),
HuggingFile("Comfy-Org/mochi_preview_repackaged", "split_files/vae/mochi_vae.safetensors"),
], folder_name="vae")
KNOWN_HUGGINGFACE_MODEL_REPOS: Final[Set[str]] = {
'JingyeChen22/textdiffuser2_layout_planner',
'JingyeChen22/textdiffuser2-full-ft',
'microsoft/Phi-3-mini-4k-instruct',
'llava-hf/llava-v1.6-mistral-7b-hf',
'facebook/nllb-200-distilled-1.3B',
'THUDM/chatglm3-6b',
'roborovski/superprompt-v1',
'Qwen/Qwen2-VL-7B-Instruct',
}
KNOWN_UNET_MODELS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet-Comfyui.fp16.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-schnell", "flux1-schnell.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-Fill-dev", "flux1-fill-dev.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-Canny-dev", "flux1-canny-dev.safetensors"),
HuggingFile("black-forest-labs/FLUX.1-Depth-dev", "flux1-depth-dev.safetensors"),
HuggingFile("Kijai/flux-fp8", "flux1-dev-fp8.safetensors"),
HuggingFile("Kijai/flux-fp8", "flux1-schnell-fp8.safetensors"),
HuggingFile("Comfy-Org/mochi_preview_repackaged", "split_files/diffusion_models/mochi_preview_bf16.safetensors"),
HuggingFile("Comfy-Org/mochi_preview_repackaged", "split_files/diffusion_models/mochi_preview_fp8_scaled.safetensors"),
], folder_name="diffusion_models")
KNOWN_CLIP_MODELS: Final[KnownDownloadables] = KnownDownloadables([
# todo: is this correct?
HuggingFile("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors"),
HuggingFile("comfyanonymous/flux_text_encoders", "t5xxl_fp8_e4m3fn.safetensors"),
HuggingFile("Comfy-Org/mochi_preview_repackaged", "split_files/text_encoders/t5xxl_fp8_e4m3fn_scaled.safetensors"),
HuggingFile("stabilityai/stable-diffusion-3-medium", "text_encoders/clip_g.safetensors"),
HuggingFile("comfyanonymous/flux_text_encoders", "clip_l.safetensors", save_with_filename="clip_l.safetensors"),
# uses names from https://comfyanonymous.github.io/ComfyUI_examples/audio/
HuggingFile("google-t5/t5-base", "model.safetensors", save_with_filename="t5_base.safetensors"),
HuggingFile("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors"),
], folder_name="clip")
KNOWN_STYLE_MODELS: Final[KnownDownloadables] = KnownDownloadables([
HuggingFile("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors"),
], folder_name="style_models")
_known_models_db: list[KnownDownloadables] = [
KNOWN_CHECKPOINTS,
KNOWN_VAES,
KNOWN_LORAS,
KNOWN_UNET_MODELS,
KNOWN_APPROX_VAES,
KNOWN_DIFF_CONTROLNETS,
KNOWN_CLIP_MODELS,
KNOWN_CLIP_VISION_MODELS,
KNOWN_CONTROLNETS,
KNOWN_GLIGEN_MODELS,
KNOWN_IMAGE_ONLY_CHECKPOINTS,
KNOWN_UNCLIP_CHECKPOINTS,
KNOWN_UPSCALERS,
KNOWN_STYLE_MODELS,
]
def _is_known_model_in_models_db(obj: list[Downloadable] | KnownDownloadables):
return any(candidate is obj or candidate.data is obj for candidate in _known_models_db)
def _get_known_models_for_folder_name(folder_name: str) -> List[Downloadable]:
return list(chain.from_iterable([candidate for candidate in _known_models_db if candidate.folder_name == folder_name]))
def add_known_models(folder_name: str, known_models: Optional[List[Downloadable]] | Downloadable = None, *models: Downloadable) -> MutableSequence[Downloadable]:
if isinstance(known_models, Downloadable):
models = [known_models] + list(models) or []
known_models = None
if known_models is None:
try:
known_models = next(candidate for candidate in _known_models_db if candidate.folder_name == folder_name)
except StopIteration:
add_model_folder_path(folder_name, extensions=supported_pt_extensions)
known_models = KnownDownloadables([], folder_name=folder_name)
# check if any of the pre-existing known models already reference this list
if not _is_known_model_in_models_db(known_models):
if not isinstance(known_models, KnownDownloadables):
# wrap it
known_models = KnownDownloadables(known_models)
# meets protocol at this point
_known_models_db.append(known_models)
if len(models) < 1:
return known_models
if args.disable_known_models:
logging.warning(f"Known models have been disabled in the options (while adding {folder_name}/{','.join(map(str, models))})")
pre_existing = frozenset(known_models)
known_models.extend([model for model in models if model not in pre_existing])
return known_models
@_deprecate_method(version="1.0.0", message="use get_huggingface_repo_list instead")
def huggingface_repos() -> List[str]:
return get_huggingface_repo_list()
def get_huggingface_repo_list(*extra_cache_dirs: str) -> List[str]:
if len(extra_cache_dirs) == 0:
extra_cache_dirs = folder_paths.get_folder_paths("huggingface_cache")
# all in cache directories
existing_repo_ids = frozenset(
cache_item.repo_id for cache_item in \
reduce(operator.or_,
map(lambda cache_info: cache_info.repos, [scan_cache_dir()] + [scan_cache_dir(cache_dir=cache_dir) for cache_dir in extra_cache_dirs if os.path.isdir(cache_dir)]))
if cache_item.repo_type == "model" or cache_item.repo_type == "space"
)
# also check local-dir style directories
existing_local_dir_repos = set()
local_dirs = folder_paths.get_folder_paths("huggingface")
for local_dir_root in local_dirs:
# enumerate all the two-directory paths
if not os.path.isdir(local_dir_root):
continue
for user_dir in Path(local_dir_root).iterdir():
for model_dir in user_dir.iterdir():
existing_local_dir_repos.add(f"{user_dir.name}/{model_dir.name}")
known_repo_ids = frozenset(KNOWN_HUGGINGFACE_MODEL_REPOS)
if args.disable_known_models:
return list(existing_repo_ids | existing_local_dir_repos)
else:
return list(existing_repo_ids | existing_local_dir_repos | known_repo_ids)
def get_or_download_huggingface_repo(repo_id: str, cache_dirs: Optional[list] = None, local_dirs: Optional[list] = None) -> Optional[str]:
cache_dirs = cache_dirs or folder_paths.get_folder_paths("huggingface_cache")
local_dirs = local_dirs or folder_paths.get_folder_paths("huggingface")
cache_dirs_snapshots, local_dirs_snapshots = _get_cache_hits(cache_dirs, local_dirs, repo_id)
local_dirs_cache_hit = len(local_dirs_snapshots) > 0
cache_dirs_cache_hit = len(cache_dirs_snapshots) > 0
logging.debug(f"cache {'hit' if local_dirs_cache_hit or cache_dirs_cache_hit else 'miss'} for repo_id={repo_id} because local_dirs={local_dirs_cache_hit}, cache_dirs={cache_dirs_cache_hit}")
# if we're in forced local directory mode, only use the local dir snapshots, and otherwise, download
if args.force_hf_local_dir_mode:
# todo: we still have to figure out a way to download things to the right places by default
if len(local_dirs_snapshots) > 0:
return local_dirs_snapshots[0]
elif not args.disable_known_models:
destination = os.path.join(local_dirs[0], repo_id)
logging.debug(f"downloading repo_id={repo_id}, local_dir={destination}")
return snapshot_download(repo_id, local_dir=destination)
snapshots = local_dirs_snapshots + cache_dirs_snapshots
if len(snapshots) > 0:
return snapshots[0]
elif not args.disable_known_models:
logging.debug(f"downloading repo_id={repo_id}")
return snapshot_download(repo_id)
# this repo was not found
return None
def _get_cache_hits(cache_dirs: Sequence[str], local_dirs: Sequence[str], repo_id):
local_dirs_snapshots = []
cache_dirs_snapshots = []
# find all the pre-existing downloads for this repo_id
try:
repo_files = set(_hf_fs.ls(repo_id, detail=False))
except:
repo_files = []
if len(repo_files) > 0:
for local_dir in local_dirs:
local_path = Path(local_dir) / repo_id
local_files = set(f"{repo_id}/{f.relative_to(local_path)}" for f in local_path.rglob("*") if f.is_file())
# fix path representation
local_files = set(f.replace("\\", "/") for f in local_files)
# remove .huggingface
local_files = set(f for f in local_files if not f.startswith(f"{repo_id}/.huggingface") and not f.startswith(f"{repo_id}/.cache"))
# local_files.issubsetof(repo_files)
if len(local_files) > 0 and local_files.issubset(repo_files):
local_dirs_snapshots.append(str(local_path))
else:
# an empty repository or unknown repository info, trust that if the directory exists, it matches
for local_dir in local_dirs:
local_path = Path(local_dir) / repo_id
if local_path.is_dir():
local_dirs_snapshots.append(str(local_path))
for cache_dir in (None, *cache_dirs):
try:
cache_dirs_snapshots.append(snapshot_download(repo_id, local_files_only=True, cache_dir=cache_dir))
except FileNotFoundError:
continue
except:
continue
return cache_dirs_snapshots, local_dirs_snapshots
def _delete_repo_from_huggingface_cache(repo_id: str, cache_dir: Optional[str] = None) -> List[str]:
results = scan_cache_dir(cache_dir)
matching = [repo for repo in results.repos if repo.repo_id == repo_id]
if len(matching) == 0:
return []
revisions: List[str] = []
for repo in matching:
for revision_info in repo.revisions:
revisions.append(revision_info.commit_hash)
results.delete_revisions(*revisions).execute()
return revisions