-
Notifications
You must be signed in to change notification settings - Fork 4.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
142 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import os | ||
|
||
import pytest | ||
from datasets import load_dataset | ||
|
||
from llamafactory.data import get_dataset | ||
from llamafactory.hparams import get_train_args | ||
from llamafactory.model import load_tokenizer | ||
|
||
|
||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM") | ||
|
||
TRAINING_ARGS = { | ||
"model_name_or_path": TINY_LLAMA, | ||
"stage": "sft", | ||
"do_train": True, | ||
"finetuning_type": "full", | ||
"dataset": "llamafactory/tiny_dataset", | ||
"dataset_dir": "ONLINE", | ||
"template": "llama3", | ||
"cutoff_len": 1024, | ||
"overwrite_cache": True, | ||
"output_dir": "dummy_dir", | ||
"overwrite_output_dir": True, | ||
"fp16": True, | ||
} | ||
|
||
|
||
@pytest.mark.parametrize("test_num", [5]) | ||
def test_supervised(test_num: int): | ||
model_args, data_args, training_args, _, _ = get_train_args(TRAINING_ARGS) | ||
tokenizer_module = load_tokenizer(model_args) | ||
tokenizer = tokenizer_module["tokenizer"] | ||
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) | ||
|
||
original_data = load_dataset(TRAINING_ARGS["dataset"], split="train") | ||
for test_idx in range(test_num): | ||
decode_result = tokenizer.decode(tokenized_data["input_ids"][test_idx]) | ||
messages = [ | ||
{"role": "user", "content": original_data[test_idx]["instruction"]}, | ||
{"role": "assistant", "content": original_data[test_idx]["output"]}, | ||
] | ||
templated_result = tokenizer.apply_chat_template(messages, tokenize=False) | ||
assert decode_result == templated_result |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import os | ||
|
||
import torch | ||
|
||
from llamafactory.hparams import get_train_args | ||
from llamafactory.model import load_model, load_tokenizer | ||
|
||
|
||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM") | ||
|
||
TRAINING_ARGS = { | ||
"model_name_or_path": TINY_LLAMA, | ||
"stage": "sft", | ||
"do_train": True, | ||
"finetuning_type": "freeze", | ||
"dataset": "llamafactory/tiny_dataset", | ||
"dataset_dir": "ONLINE", | ||
"template": "llama3", | ||
"cutoff_len": 1024, | ||
"overwrite_cache": True, | ||
"output_dir": "dummy_dir", | ||
"overwrite_output_dir": True, | ||
"fp16": True, | ||
} | ||
|
||
|
||
def test_freeze_all_modules(): | ||
model_args, _, _, finetuning_args, _ = get_train_args( | ||
{ | ||
"freeze_trainable_layers": 1, | ||
**TRAINING_ARGS, | ||
} | ||
) | ||
tokenizer_module = load_tokenizer(model_args) | ||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | ||
for name, param in model.named_parameters(): | ||
if name.startswith("model.layers.1."): | ||
assert param.requires_grad is True | ||
assert param.dtype == torch.float32 | ||
else: | ||
assert param.requires_grad is False | ||
assert param.dtype == torch.float16 | ||
|
||
|
||
def test_freeze_extra_modules(): | ||
model_args, _, _, finetuning_args, _ = get_train_args( | ||
{ | ||
"freeze_trainable_layers": 1, | ||
"freeze_extra_modules": "embed_tokens,lm_head", | ||
**TRAINING_ARGS, | ||
} | ||
) | ||
tokenizer_module = load_tokenizer(model_args) | ||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | ||
for name, param in model.named_parameters(): | ||
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]): | ||
assert param.requires_grad is True | ||
assert param.dtype == torch.float32 | ||
else: | ||
assert param.requires_grad is False | ||
assert param.dtype == torch.float16 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import os | ||
|
||
import torch | ||
|
||
from llamafactory.hparams import get_train_args | ||
from llamafactory.model import load_model, load_tokenizer | ||
|
||
|
||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM") | ||
|
||
TRAINING_ARGS = { | ||
"model_name_or_path": TINY_LLAMA, | ||
"stage": "sft", | ||
"do_train": True, | ||
"finetuning_type": "full", | ||
"dataset": "llamafactory/tiny_dataset", | ||
"dataset_dir": "ONLINE", | ||
"template": "llama3", | ||
"cutoff_len": 1024, | ||
"overwrite_cache": True, | ||
"output_dir": "dummy_dir", | ||
"overwrite_output_dir": True, | ||
"fp16": True, | ||
} | ||
|
||
|
||
def test_full(): | ||
model_args, _, _, finetuning_args, _ = get_train_args(TRAINING_ARGS) | ||
tokenizer_module = load_tokenizer(model_args) | ||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | ||
for param in model.parameters(): | ||
assert param.requires_grad is True | ||
assert param.dtype == torch.float32 |