-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdeep_slam.py
442 lines (382 loc) · 20.3 KB
/
deep_slam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""
Tianwei Shen, HKUST, 2018 - 2019.
DeepSlam class defines the training procedure and losses
"""
from __future__ import division
import os
import time
import math
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from data_loader import DataLoader
from nets import *
from geo_utils import get_relative_pose, projective_inverse_warp, pose_vec2mat, mat2euler, \
fundamental_matrix_from_rt, reprojection_error
class DeepSlam(object):
def __init__(self):
pass
def build_train_graph(self):
'''[summary]
build training graph
Returns:
data loader and batch sample for train() to initialize
undefined placeholders
'''
opt = self.opt
is_read_pose = opt.with_pose or opt.pose_weight > 0
loader = DataLoader(opt.dataset_dir,
opt.batch_size,
opt.img_height,
opt.img_width,
opt.num_source,
opt.num_scales,
is_read_pose,
opt.match_num)
with tf.name_scope("data_loading"):
batch_sample = loader.load_train_batch()
# give additional batch_size info since the input is undetermined placeholder
inputs = batch_sample.get_next()
tgt_image = inputs[0]
src_image_stack = inputs[1]
intrinsics = inputs[2]
#[bs, 128, 416, 3]
tgt_image.set_shape([opt.batch_size, opt.img_height, opt.img_width, 3])
# [bs, 128, 416, 6]
src_image_stack.set_shape([opt.batch_size, opt.img_height, opt.img_width, 3*opt.num_source])
# [bs, 4, 3, 3]
intrinsics.set_shape([opt.batch_size, opt.num_scales, 3, 3])
if is_read_pose:
poses = inputs[3]
poses.set_shape([opt.batch_size, 3, 6])
if opt.match_num > 0:
matches = inputs[3]
matches.set_shape([opt.batch_size, opt.num_source, opt.match_num, 4])
tgt_image = self.preprocess_image(tgt_image)
src_image_stack = self.preprocess_image(src_image_stack)
with tf.name_scope("depth_prediction"):
pred_disp, _ = disp_net_res50(tgt_image, is_training=True)
if opt.with_pose: # cannot normalize pose here due to given scale
pred_depth = [1. / d for d in pred_disp]
else:
pred_depth = [1. / self.spatial_normalize(d) for d in pred_disp]
with tf.name_scope("pose_and_explainability_prediction"):
pred_poses, _ = pose_net(tgt_image, src_image_stack, is_training=True)
with tf.name_scope("compute_loss"):
pixel_loss = 0
smooth_loss = 0
pose_loss = 0
ssim_loss = 0
match_loss = 0
tgt_image_all = []
src_image_stack_all = []
mask_stack_all = []
proj_image_stack_all = []
proj_error_stack_all = []
for s in range(opt.num_scales):
# Scale the source and target images for computing loss at the according scale.
curr_tgt_image = tf.image.resize_area(tgt_image,
[int(opt.img_height/(2**s)), int(opt.img_width/(2**s))])
curr_src_image_stack = tf.image.resize_area(src_image_stack,
[int(opt.img_height/(2**s)), int(opt.img_width/(2**s))])
if opt.smooth_weight > 0:
smooth_loss += opt.smooth_weight/(2**s) * \
self.compute_smooth_loss(pred_disp[s], curr_tgt_image)
for i in range(opt.num_source):
# Inverse warp the source image to the target image frame
if is_read_pose:
relative_pose = get_relative_pose(poses[:,0,:], poses[:,i+1,:])
relative_rot = tf.slice(relative_pose, [0, 0, 0], [-1, 3, 3])
relative_rot_vec = mat2euler(relative_rot)
relative_trans_vec = tf.slice(relative_pose, [0, 0, 3], [-1, 3, 1])
relative_pose_vec = tf.squeeze(tf.concat([relative_rot_vec, relative_trans_vec], axis=1))
if opt.with_pose:
warp_pose = relative_pose
pose_is_vec = False
else:
warp_pose = pred_poses[:,i,:]
pose_is_vec = True
curr_proj_image, mask = projective_inverse_warp(
curr_src_image_stack[:,:,:,3*i:3*(i+1)],
tf.squeeze(pred_depth[s], axis=3),
warp_pose, intrinsics[:,s,:,:], is_vec=pose_is_vec)
curr_proj_error = tf.abs(curr_proj_image - curr_tgt_image)
curr_proj_error = tf.multiply(curr_proj_error, mask)
# below-threshold mask
perct_thresh = tf.contrib.distributions.percentile(curr_proj_error, q=99, axis=[1,2])
perct_thresh = tf.expand_dims(tf.expand_dims(perct_thresh, 1), 1)
curr_proj_error = tf.clip_by_value(curr_proj_error, 0, perct_thresh)
above_perct_thresh_region = tf.reduce_max(tf.cast(tf.equal(curr_proj_error, perct_thresh), 'float32'), axis=3)
above_perct_thresh_region = tf.greater_equal(above_perct_thresh_region, 1.0)
suppresion_mask = tf.expand_dims(1.0 - tf.cast(above_perct_thresh_region, 'float32'), axis=3)
curr_proj_error = tf.multiply(curr_proj_error, suppresion_mask)
mask = tf.multiply(mask, suppresion_mask)
pixel_loss += tf.reduce_mean(curr_proj_error)
# SSIM loss
if opt.ssim_weight > 0:
ssim_mask = slim.avg_pool2d(mask, 3, 1, 'VALID')
ssim_loss += tf.reduce_mean(
ssim_mask * self.compute_ssim_loss(curr_proj_image, curr_tgt_image))
# Relative pose error
if opt.pose_weight > 0 and s == 0: # only do it for highest resolution
pose_loss += tf.reduce_mean(self.compute_pose_loss(relative_pose_vec, pred_poses[:, i, :]))
# Matches loss (fundamental matrix)
if opt.match_num > 0 and s == 0: # only do it for highest resolution
match_loss += self.compute_match_loss(matches[:, i, :, :], tf.squeeze(
pred_depth[s], axis=3), pred_poses[:, i, :], intrinsics[:, s, :, :])
# Prepare images for tensorboard summaries
if i == 0:
proj_image_stack = curr_proj_image
mask_stack = mask
proj_error_stack = curr_proj_error
else:
proj_image_stack = tf.concat([proj_image_stack, curr_proj_image], axis=3)
mask_stack = tf.concat([mask_stack, mask], axis=3)
proj_error_stack = tf.concat([proj_error_stack, curr_proj_error], axis=3)
tgt_image_all.append(curr_tgt_image)
src_image_stack_all.append(curr_src_image_stack)
proj_image_stack_all.append(proj_image_stack)
mask_stack_all.append(mask_stack)
proj_error_stack_all.append(proj_error_stack)
total_loss = opt.ssim_weight * ssim_loss + \
(1 - opt.ssim_weight) * pixel_loss + \
smooth_loss + opt.pose_weight * pose_loss + opt.match_weight * match_loss
with tf.name_scope("train_op"):
train_vars = [var for var in tf.trainable_variables()]
optim = tf.train.AdamOptimizer(opt.learning_rate, opt.beta1)
# self.grads_and_vars = optim.compute_gradients(total_loss,
# var_list=train_vars)
# self.train_op = optim.apply_gradients(self.grads_and_vars)
self.train_op = slim.learning.create_train_op(total_loss, optim)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.incr_global_step = tf.assign(self.global_step, self.global_step+1)
# Collect tensors that are useful later (e.g. tf summary)
self.pred_depth = pred_depth
self.pred_poses = pred_poses
self.steps_per_epoch = loader.steps_per_epoch
self.total_loss = total_loss
self.pixel_loss = pixel_loss
self.pose_loss = pose_loss
self.smooth_loss = smooth_loss
self.ssim_loss = ssim_loss
self.match_loss = match_loss
self.tgt_image_all = tgt_image_all
self.src_image_stack_all = src_image_stack_all
self.proj_image_stack_all = proj_image_stack_all
self.mask_stack_all = mask_stack_all
self.proj_error_stack_all = proj_error_stack_all
return loader, batch_sample
def compute_smooth_loss(self, disp, img):
def _gradient(pred):
D_dx = pred[:, :, 1:, :] - pred[:, :, :-1, :]
D_dy = pred[:, 1:, :, :] - pred[:, :-1, :, :]
return D_dx, D_dy
disp_gradients_x, disp_gradients_y = _gradient(disp)
image_gradients_x, image_gradients_y = _gradient(img)
weights_x = tf.exp(-tf.reduce_mean(tf.abs(image_gradients_x), 3, keep_dims=True))
weights_y = tf.exp(-tf.reduce_mean(tf.abs(image_gradients_y), 3, keep_dims=True))
smoothness_x = disp_gradients_x * weights_x
smoothness_y = disp_gradients_y * weights_y
return tf.reduce_mean(tf.abs(smoothness_x)) + tf.reduce_mean(tf.abs(smoothness_y))
def compute_pose_loss(self, prior_pose_vec, pred_pose_vec):
rot_vec_err = tf.norm(prior_pose_vec[:,:3] - pred_pose_vec[:,:3], axis=1)
trans_err = tf.norm(tf.nn.l2_normalize(
prior_pose_vec[:, 3:], dim=1) - tf.nn.l2_normalize(pred_pose_vec[:, 3:], dim=1), axis=1)
return rot_vec_err + trans_err
# reference https://github.com/tensorflow/models/tree/master/research/vid2depth/model.py
def compute_ssim_loss(self, x, y):
"""Computes a differentiable structured image similarity measure."""
c1 = 0.01**2
c2 = 0.03**2
mu_x = slim.avg_pool2d(x, 3, 1, 'VALID')
mu_y = slim.avg_pool2d(y, 3, 1, 'VALID')
sigma_x = slim.avg_pool2d(x**2, 3, 1, 'VALID') - mu_x**2
sigma_y = slim.avg_pool2d(y**2, 3, 1, 'VALID') - mu_y**2
sigma_xy = slim.avg_pool2d(x * y, 3, 1, 'VALID') - mu_x * mu_y
ssim_n = (2 * mu_x * mu_y + c1) * (2 * sigma_xy + c2)
ssim_d = (mu_x**2 + mu_y**2 + c1) * (sigma_x + sigma_y + c2)
ssim = ssim_n / ssim_d
return tf.clip_by_value((1 - ssim) / 2, 0, 1)
# reference: https://github.com/yzcjtr/GeoNet/blob/master/geonet_model.py
# and https://arxiv.org/abs/1712.00175
def spatial_normalize(self, disp):
_, curr_h, curr_w, curr_c = disp.get_shape().as_list()
disp_mean = tf.reduce_mean(disp, axis=[1,2,3], keep_dims=True)
disp_mean = tf.tile(disp_mean, [1, curr_h, curr_w, curr_c])
return disp/disp_mean
def normalize_for_show(self, disp, thresh=90):
disp_max = tf.contrib.distributions.percentile(disp, q=thresh, axis=[1,2])
disp_max = tf.expand_dims(tf.expand_dims(disp_max, 1), 1)
clip_disp = tf.clip_by_value(disp, 0, disp_max)
return clip_disp
def compute_match_loss(self, matches, pred_depth, pose, intrinsics):
points1 = tf.slice(matches, [0, 0, 0], [-1, -1, 2])
points2 = tf.slice(matches, [0, 0, 2], [-1, -1, 2])
ones = tf.ones([self.opt.batch_size, self.opt.match_num, 1])
points1 = tf.concat([points1, ones], axis=2)
points2 = tf.concat([points2, ones], axis=2)
match_num = matches.get_shape().as_list()[1]
# compute fundamental matrix loss
fmat = fundamental_matrix_from_rt(pose, intrinsics)
fmat = tf.expand_dims(fmat, axis=1)
fmat_tiles = tf.tile(fmat, [1, match_num, 1, 1])
epi_lines = tf.matmul(fmat_tiles, tf.expand_dims(points1, axis=3))
dist_p2l = tf.abs(tf.matmul(tf.transpose(epi_lines, perm=[0, 1, 3, 2]), tf.expand_dims(points2, axis=3)))
a = tf.slice(epi_lines, [0,0,0,0], [-1,-1,1,-1])
b = tf.slice(epi_lines, [0,0,1,0], [-1,-1,1,-1])
dist_div = tf.sqrt(a*a + b*b) + 1e-6
dist_p2l = tf.reduce_mean(dist_p2l / dist_div)
return dist_p2l
def collect_summaries(self):
opt = self.opt
tf.summary.scalar("total_loss", self.total_loss)
tf.summary.scalar("pixel_loss", self.pixel_loss)
if opt.smooth_weight > 0:
tf.summary.scalar("smooth_loss", self.smooth_loss)
if opt.pose_weight > 0:
tf.summary.scalar("pose_loss", self.pose_loss)
if opt.ssim_weight > 0:
tf.summary.scalar("ssim_loss", self.ssim_loss)
if opt.match_num > 0:
tf.summary.scalar("match_loss", self.match_loss)
#for s in range(opt.num_scales):
s = 0 # only show the error images of the highest resolution (scale 0)
tf.summary.histogram("scale%d_depth" % s, self.pred_depth[s])
shown_disparity_image = self.normalize_for_show(1./self.pred_depth[s])
tf.summary.image('scale%d_disparity_image' % s, shown_disparity_image)
tf.summary.image('scale%d_target_image' % s, self.deprocess_image(self.tgt_image_all[s]))
for i in range(opt.num_source):
tf.summary.image(
'scale%d_source_image_%d' % (s, i),
self.deprocess_image(self.src_image_stack_all[s][:, :, :, i*3:(i+1)*3]))
proj_images = self.deprocess_image(self.proj_image_stack_all[s][:, :, :, i*3:(i+1)*3])
mask_images = self.mask_stack_all[s][:, :, :, i:i+1]
proj_error_images = self.deprocess_image(tf.clip_by_value(
self.proj_error_stack_all[s][:, :, :, i*3:(i+1)*3] - 1, -1, 1))
tf.summary.image('scale%d_projected_image_%d' % (s, i), proj_images)
tf.summary.image('scale%d_proj_error_%d' % (s, i), proj_error_images)
tf.summary.image('scale%d_mask_%d' % (s, i), mask_images)
def train(self, opt):
opt.num_source = opt.seq_length - 1
self.opt = opt
if opt.match_num > 0: # don't use match and pose at the same time
opt.with_pose = False
data_loader, batch_sample = self.build_train_graph()
self.collect_summaries()
with tf.name_scope("parameter_count"):
parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) \
for v in tf.trainable_variables()])
self.saver = tf.train.Saver([var for var in tf.model_variables()] + \
[self.global_step],
max_to_keep=None)
sv = tf.train.Supervisor(logdir=opt.checkpoint_dir,
save_summaries_secs=0,
saver=None)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with sv.managed_session(config=config) as sess:
data_loader.init_data_pipeline(sess, batch_sample)
print('Trainable variables: ')
for var in tf.trainable_variables():
print(var.name)
print("parameter_count =", sess.run(parameter_count))
if opt.continue_train:
if opt.init_ckpt_file is None:
checkpoint = tf.train.latest_checkpoint(opt.checkpoint_dir)
else:
checkpoint = opt.init_ckpt_file
print("Resume training from previous checkpoint: %s" % checkpoint)
self.saver.restore(sess, checkpoint)
start_time = time.time()
for step in range(0, opt.max_steps):
fetches = {"train": self.train_op,
"global_step": self.global_step,
"incr_global_step": self.incr_global_step}
if step % opt.summary_freq == 0:
fetches["total_loss"] = self.total_loss
fetches["pixel_loss"] = self.pixel_loss
fetches["smooth_loss"] = self.smooth_loss
fetches["summary"] = sv.summary_op
if opt.pose_weight > 0:
fetches["pose_loss"] = self.pose_loss
results = sess.run(fetches)
gs = results["global_step"]
if step % opt.summary_freq == 0:
sv.summary_writer.add_summary(results["summary"], gs)
train_epoch = math.ceil(gs / self.steps_per_epoch)
train_step = gs - (train_epoch - 1) * self.steps_per_epoch
print("Epoch: [%2d] [%5d/%5d] time: %4.4f"
% (train_epoch, train_step, self.steps_per_epoch,
(time.time() - start_time)/opt.summary_freq))
print("total/pixel/smooth loss: [%.3f/%.3f/%.3f]\n" % (
results["total_loss"], results["pixel_loss"], results["smooth_loss"]))
start_time = time.time()
# save model
if step != 0 and step % opt.save_freq == 0:
self.save(sess, opt.checkpoint_dir, gs-1)
def select_tensor_or_placeholder_input(self, input_uint8):
if input_uint8 == None:
input_uint8 = tf.placeholder(tf.uint8, [self.batch_size,
self.img_height, self.img_width, 3], name='raw_input')
self.inputs = input_uint8
else:
self.inputs = None
input_mc = self.preprocess_image(input_uint8)
return input_mc
def build_depth_test_graph(self, input_uint8):
input_mc = self.select_tensor_or_placeholder_input(input_uint8)
with tf.name_scope("depth_prediction"):
pred_disp, depth_net_endpoints = disp_net_res50(input_mc, is_training=False)
pred_depth = [1./disp for disp in pred_disp]
pred_depth = pred_depth[0]
self.pred_depth = pred_depth
self.depth_epts = depth_net_endpoints
def build_pose_test_graph(self, input_uint8):
input_mc = self.select_tensor_or_placeholder_input(input_uint8)
loader = DataLoader()
tgt_image, src_image_stack = \
loader.batch_unpack_image_sequence(
input_mc, self.img_height, self.img_width, self.num_source)
with tf.name_scope("pose_prediction"):
pred_poses, _ = pose_net(tgt_image, src_image_stack, is_training=False)
self.pred_poses = pred_poses
def preprocess_image(self, image):
# Assuming input image is uint8
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
return image * 2. -1.
def deprocess_image(self, image):
# Assuming input image is float32
image = (image + 1.)/2.
return tf.image.convert_image_dtype(image, dtype=tf.uint8)
def setup_inference(self,
img_height,
img_width,
mode,
seq_length=3,
batch_size=1,
input_img_uint8=None):
self.img_height = img_height
self.img_width = img_width
self.mode = mode
self.batch_size = batch_size
if self.mode == 'depth':
self.build_depth_test_graph(input_img_uint8)
if self.mode == 'pose':
self.seq_length = seq_length
self.num_source = seq_length - 1
self.build_pose_test_graph(input_img_uint8)
def inference(self, sess, mode, inputs=None):
fetches = {}
if mode == 'depth':
fetches['depth'] = self.pred_depth
if mode == 'pose':
fetches['pose'] = self.pred_poses
if inputs is None:
results = sess.run(fetches)
else:
results = sess.run(fetches, feed_dict={self.inputs:inputs})
return results
def save(self, sess, checkpoint_dir, step):
model_name = 'model'
print(" [*] Saving checkpoint step %d to %s..." % (step, checkpoint_dir))
self.saver.save(sess, os.path.join(checkpoint_dir, model_name), global_step=step)