-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathgeo_utils.py
382 lines (319 loc) · 13.9 KB
/
geo_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""
Tianwei Shen, HKUST, 2018 - 2019
Geometric utility functions
Adapted from: https://github.com/tinghuiz/SfMLearner
"""
from __future__ import division
import numpy as np
import math
import tensorflow as tf
def euler2mat(z, y, x):
"""[summary] Converts euler angles to rotation matrix
Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174
TODO: remove the dimension for 'N' (deprecated for converting all source
poses altogether)
Arguments:
z: rotation angle along z axis (in radians) -- size = [B, N]
y: rotation angle along y axis (in radians) -- size = [B, N]
x: rotation angle along x axis (in radians) -- size = [B, N]
Returns:
Rotation matrix corresponding to the euler angles -- size = [B, N, 3, 3]
"""
B = tf.shape(z)[0]
N = 1
z = tf.clip_by_value(z, -np.pi, np.pi)
y = tf.clip_by_value(y, -np.pi, np.pi)
x = tf.clip_by_value(x, -np.pi, np.pi)
# Expand to B x N x 1 x 1
z = tf.expand_dims(tf.expand_dims(z, -1), -1)
y = tf.expand_dims(tf.expand_dims(y, -1), -1)
x = tf.expand_dims(tf.expand_dims(x, -1), -1)
zeros = tf.zeros([B, N, 1, 1])
ones = tf.ones([B, N, 1, 1])
cosz = tf.cos(z)
sinz = tf.sin(z)
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=3)
rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
rotz_3 = tf.concat([zeros, zeros, ones], axis=3)
zmat = tf.concat([rotz_1, rotz_2, rotz_3], axis=2)
cosy = tf.cos(y)
siny = tf.sin(y)
roty_1 = tf.concat([cosy, zeros, siny], axis=3)
roty_2 = tf.concat([zeros, ones, zeros], axis=3)
roty_3 = tf.concat([-siny, zeros, cosy], axis=3)
ymat = tf.concat([roty_1, roty_2, roty_3], axis=2)
cosx = tf.cos(x)
sinx = tf.sin(x)
rotx_1 = tf.concat([ones, zeros, zeros], axis=3)
rotx_2 = tf.concat([zeros, cosx, -sinx], axis=3)
rotx_3 = tf.concat([zeros, sinx, cosx], axis=3)
xmat = tf.concat([rotx_1, rotx_2, rotx_3], axis=2)
rotMat = tf.matmul(tf.matmul(xmat, ymat), zmat)
return rotMat
def mat2euler(rot):
r00 = tf.slice(rot, [0, 0, 0], [-1, 1, 1])
r01 = tf.slice(rot, [0, 0, 1], [-1, 1, 1])
r02 = tf.slice(rot, [0, 0, 2], [-1, 1, 1])
r10 = tf.slice(rot, [0, 1, 0], [-1, 1, 1])
r11 = tf.slice(rot, [0, 1, 1], [-1, 1, 1])
r12 = tf.slice(rot, [0, 1, 2], [-1, 1, 1])
r22 = tf.slice(rot, [0, 2, 2], [-1, 1, 1])
cy = tf.sqrt(r22*r22 + r12 * r12)
def f1():
z = tf.atan2(-r01, r00)
y = tf.atan2(r02, cy)
x = tf.atan2(-r12, r22)
return tf.concat([z,y,x], axis=1)
def f2():
z = tf.atan2(r10, r11)
y = tf.atan2(r02, cy)
x = tf.zeros_like(y)
return tf.concat([z,y,x], axis=1)
x1 = f1()
x2 = f2()
return tf.where(tf.squeeze(tf.less(cy, 1e-6), axis=[1,2]), x2, x1)
def pose_vec2rt(vec):
"""Converts 6DoF parameters to rotation matrix (bs,3,3) and translation vector (bs,3,1)"""
translation = tf.slice(vec, [0, 3], [-1, 3])
translation = tf.expand_dims(translation, -1)
rz = tf.slice(vec, [0, 0], [-1, 1])
ry = tf.slice(vec, [0, 1], [-1, 1])
rx = tf.slice(vec, [0, 2], [-1, 1])
rot_mat = euler2mat(rz, ry, rx)
rot_mat = tf.squeeze(rot_mat, axis=[1])
return rot_mat, translation
def pose_vec2mat(vec):
"""Converts 6DoF parameters to transformation matrix
Args:
vec: 6DoF parameters in the order of [rz, ry, rx, tx, ty, tz] -- [B, 6]
(NOT the original SfMLearner: tx, ty, tz, rx, ry, rz -- [B, 6])
Returns:
A transformation matrix -- [B, 4, 4]
"""
batch_size, _ = vec.get_shape().as_list()
rot_mat, translation = pose_vec2rt(vec)
filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4])
filler = tf.tile(filler, [batch_size, 1, 1])
transform_mat = tf.concat([rot_mat, translation], axis=2)
transform_mat = tf.concat([transform_mat, filler], axis=1)
return transform_mat
def pixel2cam(depth, pixel_coords, intrinsics, is_homogeneous=True):
"""Transforms coordinates in the pixel frame to the camera frame.
Args:
depth: [batch, height, width]
pixel_coords: homogeneous pixel coordinates [batch, 3, height, width]
intrinsics: camera intrinsics [batch, 3, 3]
is_homogeneous: return in homogeneous coordinates
Returns:
Coords in the camera frame [batch, 3 (4 if homogeneous), height, width]
"""
batch, height, width = depth.get_shape().as_list()
depth = tf.reshape(depth, [batch, 1, -1])
pixel_coords = tf.reshape(pixel_coords, [batch, 3, -1])
cam_coords = tf.matmul(tf.matrix_inverse(intrinsics), pixel_coords) * depth
if is_homogeneous:
ones = tf.ones([batch, 1, height*width])
cam_coords = tf.concat([cam_coords, ones], axis=1)
cam_coords = tf.reshape(cam_coords, [batch, -1, height, width])
return cam_coords
def cam2pixel(cam_coords, proj):
"""Transforms coordinates in a camera frame to the pixel frame.
Args:
cam_coords: [batch, 4, height, width]
proj: [batch, 4, 4]
Returns:
Pixel coordinates projected from the camera frame [batch, height, width, 2]
"""
batch, _, height, width = cam_coords.get_shape().as_list()
cam_coords = tf.reshape(cam_coords, [batch, 4, -1])
unnormalized_pixel_coords = tf.matmul(proj, cam_coords)
x_u = tf.slice(unnormalized_pixel_coords, [0, 0, 0], [-1, 1, -1])
y_u = tf.slice(unnormalized_pixel_coords, [0, 1, 0], [-1, 1, -1])
z_u = tf.slice(unnormalized_pixel_coords, [0, 2, 0], [-1, 1, -1])
x_n = x_u / (z_u + 1e-10)
y_n = y_u / (z_u + 1e-10)
pixel_coords = tf.concat([x_n, y_n], axis=1)
pixel_coords = tf.reshape(pixel_coords, [batch, 2, height, width])
return tf.transpose(pixel_coords, perm=[0, 2, 3, 1])
def meshgrid(batch, height, width, is_homogeneous=True):
"""Construct a 2D meshgrid.
Args:
batch: batch size
height: height of the grid
width: width of the grid
is_homogeneous: whether to return in homogeneous coordinates
Returns:
x,y grid coordinates [batch, 2 (3 if homogeneous), height, width]
"""
x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])),
tf.transpose(tf.expand_dims(
tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
tf.ones(shape=tf.stack([1, width])))
x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32)
y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32)
if is_homogeneous:
ones = tf.ones_like(x_t)
coords = tf.stack([x_t, y_t, ones], axis=0)
else:
coords = tf.stack([x_t, y_t], axis=0)
coords = tf.tile(tf.expand_dims(coords, 0), [batch, 1, 1, 1])
return coords
def get_relative_pose(target_pose_vec, source_pose_vec):
"""[summary]
get relative pose from two absolution poses
Arguments:
target_pose_vec {[batch_size, 6]} -- [rz, ry, rx, tx, ty, tz]
source_pose_vec {[batch_size, 6]} -- [rz, ry, rx, tx, ty, tz]
both are abosulte (up to scale) pose w.r.t. the world coord
Note: this is different from the original SfMLearner which is [tx, ty, tz, rx, ry, rz].
Returns:
transformation from target to source
"""
target_pose = pose_vec2mat(target_pose_vec)
source_pose = pose_vec2mat(source_pose_vec)
target_pose_inv = tf.linalg.inv(target_pose)
transform_mat = tf.matmul(source_pose, target_pose_inv)
return transform_mat
def projective_inverse_warp(img, depth, pose, intrinsics, is_vec=True):
"""Inverse warp a source image to the target image plane based on projection.
Args:
img: the source image [batch, height_s, width_s, 3]
depth: depth map of the target image [batch, height_t, width_t]
pose: target to source camera transformation matrix [batch, 6], in the
order of tx, ty, tz, rx, ry, rz
intrinsics: camera intrinsics [batch, 3, 3]
Returns:
Source image inverse warped to the target image plane [batch, height_t,
width_t, 3]
"""
batch, height, width, _ = img.get_shape().as_list()
# Convert pose vector to matrix
if is_vec:
pose = pose_vec2mat(pose)
# Construct pixel grid coordinates
pixel_coords = meshgrid(batch, height, width)
# Convert pixel coordinates to the camera frame
cam_coords = pixel2cam(depth, pixel_coords, intrinsics)
# Construct a 4x4 intrinsic matrix (TODO: can it be 3x4?)
filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4])
filler = tf.tile(filler, [batch, 1, 1])
intrinsics = tf.concat([intrinsics, tf.zeros([batch, 3, 1])], axis=2)
intrinsics = tf.concat([intrinsics, filler], axis=1)
# Get a 4x4 transformation matrix from 'target' camera frame to 'source'
# pixel frame.
proj_tgt_cam_to_src_pixel = tf.matmul(intrinsics, pose)
src_pixel_coords = cam2pixel(cam_coords, proj_tgt_cam_to_src_pixel)
output_img, mask = bilinear_sampler(img, src_pixel_coords)
return output_img, mask
def reprojection_error(src_points, tgt_points, depth, pose, intrinsics):
"""Compute re-projection error given match points
Arguments:
src_points {[type]} -- homogeneous coordinates [batch_size, match_num, 3]
tgt_points {[type]} -- homogeneous coordinates [batch_size, match_num, 3]
depth {depth mat} -- [batch_size, height, width]
pose {pose vector} -- [batch_size, 6]
intrinsics {[type]} -- [batch_size, 3, 3]
Returns:
reprojection error given sparse matches
"""
pose = pose_vec2mat(pose)
#cam_coords = pixel2cam(depth, intrinsics)
exit(-1)
return 0
def bilinear_sampler(imgs, coords):
"""Construct a new image by bilinear sampling from the input image.
Points falling outside the source image boundary have value 0.
Args:
imgs: source image to be sampled from [batch, height_s, width_s, channels]
coords: coordinates of source pixels to sample from [batch, height_t,
width_t, 2]. height_t/width_t correspond to the dimensions of the output
image (don't need to be the same as height_s/width_s). The two channels
correspond to x and y coordinates respectively.
Returns:
A new sampled image [batch, height_t, width_t, channels]
"""
def _repeat(x, n_repeats):
rep = tf.transpose(tf.expand_dims(tf.ones(shape=tf.stack([n_repeats,])), 1), [1, 0])
rep = tf.cast(rep, 'float32')
x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
return tf.reshape(x, [-1])
with tf.name_scope('image_sampling'):
coords_x, coords_y = tf.split(coords, [1, 1], axis=3)
inp_size = imgs.get_shape()
coord_size = coords.get_shape()
out_size = coords.get_shape().as_list()
out_size[3] = imgs.get_shape().as_list()[3]
coords_x = tf.cast(coords_x, 'float32')
coords_y = tf.cast(coords_y, 'float32')
x0 = tf.floor(coords_x)
x1 = x0 + 1
y0 = tf.floor(coords_y)
y1 = y0 + 1
y_max = tf.cast(tf.shape(imgs)[1] - 1, 'float32')
x_max = tf.cast(tf.shape(imgs)[2] - 1, 'float32')
zero = tf.zeros([1], dtype='float32')
x0_safe = tf.clip_by_value(x0, zero, x_max)
y0_safe = tf.clip_by_value(y0, zero, y_max)
x1_safe = tf.clip_by_value(x1, zero, x_max)
y1_safe = tf.clip_by_value(y1, zero, y_max)
wt_x0 = x1_safe - coords_x
wt_x1 = coords_x - x0_safe
wt_y0 = y1_safe - coords_y
wt_y1 = coords_y - y0_safe
## indices in the flat image to sample from
dim2 = tf.cast(inp_size[2], 'float32')
dim1 = tf.cast(inp_size[2] * inp_size[1], 'float32')
base = tf.reshape(_repeat(tf.cast(tf.range(
coord_size[0]), 'float32') * dim1, coord_size[1] * coord_size[2]), [out_size[0], out_size[1], out_size[2], 1])
base_y0 = base + y0_safe * dim2
base_y1 = base + y1_safe * dim2
idx00 = tf.reshape(x0_safe + base_y0, [-1])
idx01 = x0_safe + base_y1
idx10 = x1_safe + base_y0
idx11 = x1_safe + base_y1
## sample from imgs
imgs_flat = tf.reshape(imgs, tf.stack([-1, inp_size[3]]))
imgs_flat = tf.cast(imgs_flat, 'float32')
im00 = tf.reshape(tf.gather(imgs_flat, tf.cast(idx00, 'int32')), out_size)
im01 = tf.reshape(tf.gather(imgs_flat, tf.cast(idx01, 'int32')), out_size)
im10 = tf.reshape(tf.gather(imgs_flat, tf.cast(idx10, 'int32')), out_size)
im11 = tf.reshape(tf.gather(imgs_flat, tf.cast(idx11, 'int32')), out_size)
w00 = wt_x0 * wt_y0
w01 = wt_x0 * wt_y1
w10 = wt_x1 * wt_y0
w11 = wt_x1 * wt_y1
output = tf.add_n([w00 * im00, w01 * im01, w10 * im10, w11 * im11])
mask = tf.add_n([w00, w01, w10, w11])
return output, mask
def skew_symmetric_mat3(vec3):
"""compute the skew symmetric matrix for cross product
Arguments:
vec {vector of shape [batch_size, 3, 1]}
"""
bs = tf.shape(vec3)[0] # batch size
a1 = tf.slice(vec3, [0,0,0], [-1,1,-1])
a2 = tf.slice(vec3, [0,1,0], [-1,1,-1])
a3 = tf.slice(vec3, [0,2,0], [-1,1,-1])
zeros = tf.zeros([bs, 1, 1])
row1 = tf.concat([zeros, -a3, a2], axis=2)
row2 = tf.concat([a3, zeros, -a1], axis=2)
row3 = tf.concat([-a2, a1, zeros], axis=2)
vec3_ssm = tf.concat([row1, row2, row3], axis=1)
return vec3_ssm
def fundamental_matrix_from_rt(vec, intrinsics):
rot_mat, translation = pose_vec2rt(vec)
translation_ssm = skew_symmetric_mat3(translation)
essential_mat = tf.matmul(rot_mat, translation_ssm, name='essential_mat')
intrinsics_inv = tf.matrix_inverse(intrinsics)
fundamental_mat = tf.matmul(intrinsics_inv, essential_mat, transpose_a=True)
fundamental_mat = tf.matmul(fundamental_mat, intrinsics_inv)
return fundamental_mat
#============================== numpy functions ==============================
def scale_intrinsics(mat, sx, sy):
out = np.copy(mat)
out[0,0] *= sx
out[0,2] *= sx
out[1,1] *= sy
out[1,2] *= sy
return out