-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVeg_solver.py
182 lines (148 loc) · 5.7 KB
/
Veg_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import pickle
import timeit
from random import randint
import numpy
import numpy as np
import cupy as cp
import sys
from data_prep.data_utils import get_veg_data, get_veg_training_data, roll_data_channel_last
from data_prep.lbl_utils import get_sorted_veg_from_excel
#from cs231n.classifiers.cnn import *
from cs231n.data_utils import get_CIFAR10_data
from cs231n.gradient_check_gpu import eval_numerical_gradient_array, eval_numerical_gradient
from cs231n.layers_gpu import *
from cs231n.fast_layers_gpu import *
from cs231n.solver import Solver
from cs231n.solver_gpu import Solver as Solver_gpu
#data = get_CIFAR10_data()
from cs231n.classifiers.convnet_gpu import ConvNet as ConvNet_gpu
from cs231n.classifiers.convnet import ConvNet
from cs231n.classifiers.convnet_kah import ConvNet as ConvNet_kah
class Tee(object):
'''
Writes console to file too.
'''
def __init__(self, *files):
self.files = files
def write(self, obj):
for f in self.files:
f.write(obj)
f.flush() # If you want the output to be visible immediately
def flush(self):
for f in self.files:
try:
f.flush()
except:
pass
def cpu_solver(datav):
with open('./logs/.last-cpu.txt', 'r+') as fl:
tmp = fl.read().replace('\n', '')
os.mkdir("./logs/cpu-" + tmp)
log = open("./logs/cpu-"+tmp+"/"+tmp+"-log-cpu.txt", "w")
fl.seek(0)
fl.write(str(int(tmp) + 1))
fl.truncate()
nameCk = "./logs/cpu-"+tmp+"/"+tmp+"-run-cpu"
original = sys.stdout
sys.stdout = Tee(sys.stdout, log)
for i in range(1):
start_time = timeit.default_timer()
#.001, .000001
#lr = np.random.uniform(1e-2, 1e-5)
lr = 1e-4
# Make sure your input_dim are same order as the shape of your images. As seen the color channels are last for me.
# Switching them around leads to errors
hidden_dim = 512
print(hidden_dim)
#Must be odd number
filter_size = 5
model = ConvNet_kah(weight_scale=0.01, hidden_dim=hidden_dim, reg=0.001, filter_size=filter_size, num_filters=(7, 7, 7, 7),
num_classes=int(datav['y_train'].max()+1), input_dim=(3,46,46),dtype=np.float32)
print("lr: %e" % (lr))
batch_size = 100
epochs=20
#, "beta1" : 0.99, "beta2":0.9999
solver = Solver(model, datav,
num_epochs=epochs, batch_size=batch_size,
update_rule="adam",
optim_config={"learning_rate": lr},
checkpoint_name=nameCk,
verbose=True, print_every=50,
num_val_samples=300, num_train_samples=400)
solver.train()
acc = solver.check_accuracy(solver.X_val, solver.y_val)
log.write("lr: %e, acc: %f\n" % (lr, acc))
print(">> lr: %e, acc: %f\n" % (lr, acc))
elapsed = timeit.default_timer()
print("<**> " + str(elapsed))
log.write("Time: " + str(elapsed))
log.write("Lr: "+str(lr))
log.write("Batch_Size: "+str(batch_size))
log.write("Epochs: "+str(epochs))
log.write("Hidden_Dim: "+str(hidden_dim))
log.write("Filter_Size: "+str(filter_size))
log.close()
def gpu_solver(datav):
with open('./logs/.last-gpu.txt', 'r+') as fl:
tmp = fl.read().replace('\n', '')
os.mkdir("./logs/gpu-" + tmp)
log = open("./logs/gpu-" + tmp + "/" + tmp + "-log-gpu.txt", "w")
fl.seek(0)
fl.write(str(int(tmp) + 1))
fl.truncate()
nameCk = "./logs/gpu-" + tmp + "/" + tmp + "-run-gpu"
original = sys.stdout
sys.stdout = Tee(sys.stdout, log)
datav['X_train'] = cp.asarray(datav['X_train'])
datav['X_val'] = cp.asarray(datav['X_val'])
datav['y_train'] = cp.asarray(datav['y_train'])
datav['y_val'] = cp.asarray(datav['y_val'])
for i in range(1):
start_time = timeit.default_timer()
#lr = cp.asarray(np.random.uniform(1e-2, 1e-5))
lr = 1e-3
hidden_dim = 500
# Must be odd number
filter_size = 5
# Make sure your input_dim are same order as the shape of your images. As seen the color channels are last for me.
# Switching them around leads to errors
model = ConvNet_gpu(weight_scale=0.001, hidden_dim=hidden_dim, reg=0.001, filter_size=filter_size, num_filters=(23, 23, 23, 23),
num_classes=int(datav['y_train'].max() + 1), input_dim=(46,46, 3))
print("lr: %e" % (lr))
batch_size = 200
epochs = 10
solver = Solver_gpu(model, datav,
num_epochs=epochs, batch_size=batch_size,
update_rule="adam",
optim_config={"learning_rate": lr},
checkpoint_name=nameCk,
verbose=True, print_every=50,
num_val_samples=300, num_train_samples=400)
solver.train()
acc = solver.check_accuracy(solver.X_val, solver.y_val)
log.write("lr: %e, acc: %f\n" % (lr, acc))
print(">> lr: %e, acc: %f\n" % (lr, acc))
elapsed = timeit.default_timer()
print("<**> " + str(elapsed))
log.write("Time: " + str(elapsed))
log.write("Lr: " + str(lr))
log.write("Batch_Size: " + str(batch_size))
log.write("Epochs: " + str(epochs))
log.write("Hidden_Dim: " + str(hidden_dim))
log.write("Filter_Size: " + str(filter_size))
log.close()
if __name__ == "__main__":
inp = input("GPU (g) or CPU (c)?: ")
print('Loading data...')
#datav = get_veg_training_data(train="Extraction/imgs_veg/train", test="Extraction/imgs_veg/test")
#Change this to whatever pickel file you want to use.
with open('./cache/data_cache_mini.pkl','rb') as f:
datav = pickle.load(f)
#datav = get_CIFAR10_data()
if inp == "g":
gpu_solver(datav)
else:
datav = roll_data_channel_last(datav)
print('Starting...')
cpu_solver(datav)