-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun.py
60 lines (46 loc) · 1.56 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from __future__ import division
import plac
from pathlib import Path
import random
import spacy.en
from bascat.bascat import BagOfWords, TextClassifier
def read_data(nlp, data_dir):
for subdir, label in (('pos', 1), ('neg', 0)):
for filename in (data_dir / subdir).iterdir():
text = filename.open().read()
doc = nlp(text)
if len(doc) >= 1:
yield doc, label
def partition(examples, split_size):
examples = list(examples)
random.shuffle(examples)
n_docs = len(examples)
split = int(n_docs * split_size)
return examples[:split], examples[split:]
def iter_data(examples, n_iter):
for _ in range(n_iter):
for doc, label in examples:
yield doc, label
@plac.annotations(
data_dir=("Data directory", "positional", None, Path),
n_iter=("Number of iterations (epochs)", "option", "i", int),
dropout=("Drop-out rate", "option", "r", float),
)
def main(data_dir, n_iter=5, dropout=0.3):
n_classes = 2
print("Loading")
nlp = spacy.en.English()
print("Processing docs")
train_data, dev_data = partition(read_data(nlp, data_dir / 'train'), 0.8)
eval_data = list(read_data(nlp, data_dir / 'test'))
print("Train")
print(len(train_data))
model = TextClassifier.train(train_data, n_classes, dropout, n_iter)
print("Evaluating")
n_correct = 0
for x, y in eval_data:
guess = model.predict(model.extract(x, 0.0))
n_correct += guess == y
print(n_correct / len(eval_data))
if __name__ == '__main__':
plac.call(main)