-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathlibretro_vulkan.cpp
462 lines (387 loc) · 19.2 KB
/
libretro_vulkan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#include <cstring>
#include <cassert>
#include <vector>
#include <mutex>
#include <condition_variable>
#include "Common/GPU/Vulkan/VulkanLoader.h"
#include "Common/Log.h"
#include "Core/Config.h"
#define VK_NO_PROTOTYPES
#include "libretro/libretro_vulkan.h"
using namespace PPSSPP_VK;
static retro_hw_render_interface_vulkan *vulkan;
static struct {
VkInstance instance;
VkPhysicalDevice gpu;
VkSurfaceKHR surface;
PFN_vkGetInstanceProcAddr get_instance_proc_addr;
const char **required_device_extensions;
unsigned num_required_device_extensions;
const char **required_device_layers;
unsigned num_required_device_layers;
const VkPhysicalDeviceFeatures *required_features;
} vk_init_info;
static bool DEDICATED_ALLOCATION;
#define VULKAN_MAX_SWAPCHAIN_IMAGES 8
struct VkSwapchainKHR_T {
uint32_t count;
struct {
VkImage handle;
VkDeviceMemory memory;
retro_vulkan_image retro_image;
} images[VULKAN_MAX_SWAPCHAIN_IMAGES];
std::mutex mutex;
std::condition_variable condVar;
int current_index;
};
static VkSwapchainKHR_T chain;
#define LIBRETRO_VK_WARP_LIST() \
LIBRETRO_VK_WARP_FUNC(vkCreateInstance); \
LIBRETRO_VK_WARP_FUNC(vkDestroyInstance); \
LIBRETRO_VK_WARP_FUNC(vkCreateDevice); \
LIBRETRO_VK_WARP_FUNC(vkDestroyDevice); \
LIBRETRO_VK_WARP_FUNC(vkGetPhysicalDeviceSurfaceCapabilitiesKHR); \
LIBRETRO_VK_WARP_FUNC(vkDestroySurfaceKHR); \
LIBRETRO_VK_WARP_FUNC(vkCreateSwapchainKHR); \
LIBRETRO_VK_WARP_FUNC(vkGetSwapchainImagesKHR); \
LIBRETRO_VK_WARP_FUNC(vkAcquireNextImageKHR); \
LIBRETRO_VK_WARP_FUNC(vkQueuePresentKHR); \
LIBRETRO_VK_WARP_FUNC(vkDestroySwapchainKHR); \
LIBRETRO_VK_WARP_FUNC(vkQueueSubmit); \
LIBRETRO_VK_WARP_FUNC(vkQueueWaitIdle); \
LIBRETRO_VK_WARP_FUNC(vkCmdPipelineBarrier); \
LIBRETRO_VK_WARP_FUNC(vkCreateRenderPass);
#define LIBRETRO_VK_WARP_FUNC(x) \
PFN_##x x##_org
LIBRETRO_VK_WARP_FUNC(vkGetInstanceProcAddr);
LIBRETRO_VK_WARP_FUNC(vkGetDeviceProcAddr);
LIBRETRO_VK_WARP_LIST();
static VKAPI_ATTR VkResult VKAPI_CALL vkCreateInstance_libretro(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) {
*pInstance = vk_init_info.instance;
return VK_SUCCESS;
}
static void add_name_unique(std::vector<const char *> &list, const char *value) {
for (const char *name : list) {
if (!strcmp(value, name))
return;
}
list.push_back(value);
}
static VKAPI_ATTR VkResult VKAPI_CALL vkCreateDevice_libretro(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
VkDeviceCreateInfo newInfo = *pCreateInfo;
// Add our custom layers
std::vector<const char *> enabledLayerNames(pCreateInfo->ppEnabledLayerNames, pCreateInfo->ppEnabledLayerNames + pCreateInfo->enabledLayerCount);
for (uint32_t i = 0; i < vk_init_info.num_required_device_layers; i++) {
add_name_unique(enabledLayerNames, vk_init_info.required_device_layers[i]);
}
newInfo.enabledLayerCount = (uint32_t)enabledLayerNames.size();
newInfo.ppEnabledLayerNames = newInfo.enabledLayerCount ? enabledLayerNames.data() : nullptr;
// Add our custom extensions
std::vector<const char *> enabledExtensionNames(pCreateInfo->ppEnabledExtensionNames, pCreateInfo->ppEnabledExtensionNames + pCreateInfo->enabledExtensionCount);
for (uint32_t i = 0; i < vk_init_info.num_required_device_extensions; i++) {
add_name_unique(enabledExtensionNames, vk_init_info.required_device_extensions[i]);
}
for (const char *extensionName : enabledExtensionNames) {
if (!strcmp(extensionName, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME))
DEDICATED_ALLOCATION = true;
}
newInfo.enabledExtensionCount = (uint32_t)enabledExtensionNames.size();
newInfo.ppEnabledExtensionNames = newInfo.enabledExtensionCount ? enabledExtensionNames.data() : nullptr;
// Then check for VkPhysicalDeviceFeatures2 chaining or pEnabledFeatures to enable required features. Note that when both
// structs are present Features2 takes precedence. vkCreateDevice parameters don't give us a simple way to detect
// VK_KHR_get_physical_device_properties2 usage so we'll always try both paths.
std::unordered_map<VkPhysicalDeviceFeatures *, VkPhysicalDeviceFeatures> originalFeaturePointers;
VkPhysicalDeviceFeatures placeholderEnabledFeatures{};
for (const VkBaseOutStructure *next = (const VkBaseOutStructure *)pCreateInfo->pNext; next != nullptr;) {
if (next->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2) {
VkPhysicalDeviceFeatures *enabledFeatures = &((VkPhysicalDeviceFeatures2 *)next)->features;
originalFeaturePointers.try_emplace(enabledFeatures, *enabledFeatures);
}
next = (const VkBaseOutStructure *)next->pNext;
}
if (newInfo.pEnabledFeatures) {
placeholderEnabledFeatures = *newInfo.pEnabledFeatures;
}
newInfo.pEnabledFeatures = &placeholderEnabledFeatures;
originalFeaturePointers.try_emplace((VkPhysicalDeviceFeatures *)newInfo.pEnabledFeatures, *newInfo.pEnabledFeatures);
for (const auto& pair : originalFeaturePointers) {
for (uint32_t i = 0; i < sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32); i++) {
if (((VkBool32 *)vk_init_info.required_features)[i])
((VkBool32 *)pair.first)[i] = VK_TRUE;
}
}
VkResult res = vkCreateDevice_org(physicalDevice, &newInfo, pAllocator, pDevice);
// The above code potentially modifies application memory. Restore it to avoid unexpected side effects.
for (const auto& pair : originalFeaturePointers) {
*pair.first = pair.second;
}
return res;
}
static VKAPI_ATTR VkResult VKAPI_CALL vkCreateLibretroSurfaceKHR(VkInstance instance, const void *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) {
*pSurface = vk_init_info.surface;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceCapabilitiesKHR_libretro(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR *pSurfaceCapabilities) {
VkResult res = vkGetPhysicalDeviceSurfaceCapabilitiesKHR_org(physicalDevice, surface, pSurfaceCapabilities);
if (res == VK_SUCCESS) {
int w = g_Config.iInternalResolution * NATIVEWIDTH;
int h = g_Config.iInternalResolution * NATIVEHEIGHT;
if (g_Config.bDisplayCropTo16x9)
h -= g_Config.iInternalResolution * 2;
pSurfaceCapabilities->minImageExtent.width = w;
pSurfaceCapabilities->minImageExtent.height = h;
pSurfaceCapabilities->maxImageExtent.width = w;
pSurfaceCapabilities->maxImageExtent.height = h;
pSurfaceCapabilities->currentExtent.width = w;
pSurfaceCapabilities->currentExtent.height = h;
}
return res;
}
static bool MemoryTypeFromProperties(uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) {
VkPhysicalDeviceMemoryProperties memory_properties;
vkGetPhysicalDeviceMemoryProperties(vulkan->gpu, &memory_properties);
// Search memtypes to find first index with those properties
for (uint32_t i = 0; i < 32; i++) {
if ((typeBits & 1) == 1) {
// Type is available, does it match user properties?
if ((memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
// No memory types matched, return failure
return false;
}
static VKAPI_ATTR VkResult VKAPI_CALL vkCreateSwapchainKHR_libretro(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) {
uint32_t swapchain_mask = vulkan->get_sync_index_mask(vulkan->handle);
chain.count = 0;
while (swapchain_mask) {
chain.count++;
swapchain_mask >>= 1;
}
assert(chain.count <= VULKAN_MAX_SWAPCHAIN_IMAGES);
for (uint32_t i = 0; i < chain.count; i++) {
{
VkImageCreateInfo info{ VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
info.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
info.imageType = VK_IMAGE_TYPE_2D;
info.format = pCreateInfo->imageFormat;
info.extent.width = pCreateInfo->imageExtent.width;
info.extent.height = pCreateInfo->imageExtent.height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.samples = VK_SAMPLE_COUNT_1_BIT;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
vkCreateImage(device, &info, pAllocator, &chain.images[i].handle);
}
VkMemoryRequirements memreq;
vkGetImageMemoryRequirements(device, chain.images[i].handle, &memreq);
VkMemoryAllocateInfo alloc{ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
alloc.allocationSize = memreq.size;
VkMemoryDedicatedAllocateInfoKHR dedicated{ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
if (DEDICATED_ALLOCATION) {
alloc.pNext = &dedicated;
dedicated.image = chain.images[i].handle;
}
MemoryTypeFromProperties(memreq.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &alloc.memoryTypeIndex);
VkResult res = vkAllocateMemory(device, &alloc, pAllocator, &chain.images[i].memory);
assert(res == VK_SUCCESS);
res = vkBindImageMemory(device, chain.images[i].handle, chain.images[i].memory, 0);
assert(res == VK_SUCCESS);
chain.images[i].retro_image.create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
chain.images[i].retro_image.create_info.image = chain.images[i].handle;
chain.images[i].retro_image.create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
chain.images[i].retro_image.create_info.format = pCreateInfo->imageFormat;
chain.images[i].retro_image.create_info.components = { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY };
chain.images[i].retro_image.create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
chain.images[i].retro_image.create_info.subresourceRange.layerCount = 1;
chain.images[i].retro_image.create_info.subresourceRange.levelCount = 1;
res = vkCreateImageView(device, &chain.images[i].retro_image.create_info, pAllocator, &chain.images[i].retro_image.image_view);
assert(res == VK_SUCCESS);
chain.images[i].retro_image.image_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
chain.current_index = -1;
*pSwapchain = (VkSwapchainKHR)&chain;
return VK_SUCCESS;
}
static VKAPI_ATTR VkResult VKAPI_CALL vkGetSwapchainImagesKHR_libretro(VkDevice device, VkSwapchainKHR swapchain_, uint32_t *pSwapchainImageCount, VkImage *pSwapchainImages) {
VkSwapchainKHR_T *swapchain = (VkSwapchainKHR_T *)swapchain_;
if (pSwapchainImages) {
assert(*pSwapchainImageCount <= swapchain->count);
for (int i = 0; i < *pSwapchainImageCount; i++)
pSwapchainImages[i] = swapchain->images[i].handle;
} else
*pSwapchainImageCount = swapchain->count;
return VK_SUCCESS;
}
static VKAPI_ATTR VkResult VKAPI_CALL vkAcquireNextImageKHR_libretro(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout, VkSemaphore semaphore, VkFence fence, uint32_t *pImageIndex) {
vulkan->wait_sync_index(vulkan->handle);
*pImageIndex = vulkan->get_sync_index(vulkan->handle);
#if 0
vulkan->set_signal_semaphore(vulkan->handle, semaphore);
#endif
return VK_SUCCESS;
}
static VKAPI_ATTR VkResult VKAPI_CALL vkQueuePresentKHR_libretro(VkQueue queue, const VkPresentInfoKHR *pPresentInfo) {
VkSwapchainKHR_T *swapchain = (VkSwapchainKHR_T *)pPresentInfo->pSwapchains[0];
std::unique_lock<std::mutex> lock(swapchain->mutex);
#if 0
if(chain.current_index >= 0)
chain.condVar.wait(lock);
#endif
chain.current_index = pPresentInfo->pImageIndices[0];
#if 0
vulkan->set_image(vulkan->handle, &swapchain->images[pPresentInfo->pImageIndices[0]].retro_image, pPresentInfo->waitSemaphoreCount, pPresentInfo->pWaitSemaphores, vulkan->queue_index);
#else
vulkan->set_image(vulkan->handle, &swapchain->images[pPresentInfo->pImageIndices[0]].retro_image, 0, nullptr, vulkan->queue_index);
#endif
swapchain->condVar.notify_all();
return VK_SUCCESS;
}
void vk_libretro_wait_for_presentation() {
std::unique_lock<std::mutex> lock(chain.mutex);
if (chain.current_index < 0)
chain.condVar.wait(lock);
#if 0
chain.current_index = -1;
chain.condVar.notify_all();
#endif
}
static VKAPI_ATTR void VKAPI_CALL vkDestroyInstance_libretro(VkInstance instance, const VkAllocationCallbacks *pAllocator) {}
static VKAPI_ATTR void VKAPI_CALL vkDestroyDevice_libretro(VkDevice device, const VkAllocationCallbacks *pAllocator) {}
static VKAPI_ATTR void VKAPI_CALL vkDestroySurfaceKHR_libretro(VkInstance instance, VkSurfaceKHR surface, const VkAllocationCallbacks *pAllocator) {}
static VKAPI_ATTR void VKAPI_CALL vkDestroySwapchainKHR_libretro(VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks *pAllocator) {
for (int i = 0; i < chain.count; i++) {
vkDestroyImage(device, chain.images[i].handle, pAllocator);
vkDestroyImageView(device, chain.images[i].retro_image.image_view, pAllocator);
vkFreeMemory(device, chain.images[i].memory, pAllocator);
}
memset(&chain.images, 0x00, sizeof(chain.images));
chain.count = 0;
chain.current_index = -1;
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueSubmit_libretro(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
VkResult res = VK_SUCCESS;
#if 0
for(int i = 0; i < submitCount; i++)
vulkan->set_command_buffers(vulkan->handle, pSubmits[i].commandBufferCount, pSubmits[i].pCommandBuffers);
#else
#if 1
for (int i = 0; i < submitCount; i++) {
((VkSubmitInfo *)pSubmits)[i].waitSemaphoreCount = 0;
((VkSubmitInfo *)pSubmits)[i].pWaitSemaphores = nullptr;
((VkSubmitInfo *)pSubmits)[i].signalSemaphoreCount = 0;
((VkSubmitInfo *)pSubmits)[i].pSignalSemaphores = nullptr;
}
#endif
vulkan->lock_queue(vulkan->handle);
res = vkQueueSubmit_org(queue, submitCount, pSubmits, fence);
vulkan->unlock_queue(vulkan->handle);
#endif
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL vkQueueWaitIdle_libretro(VkQueue queue) {
vulkan->lock_queue(vulkan->handle);
VkResult res = vkQueueWaitIdle_org(queue);
vulkan->unlock_queue(vulkan->handle);
return res;
}
VKAPI_ATTR void VKAPI_CALL vkCmdPipelineBarrier_libretro(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) {
VkImageMemoryBarrier *barriers = (VkImageMemoryBarrier *)pImageMemoryBarriers;
for (int i = 0; i < imageMemoryBarrierCount; i++) {
if (pImageMemoryBarriers[i].oldLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR) {
barriers[i].oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barriers[i].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
}
if (pImageMemoryBarriers[i].newLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR) {
barriers[i].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barriers[i].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
}
}
return vkCmdPipelineBarrier_org(commandBuffer, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, barriers);
}
VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass_libretro(VkDevice device, const VkRenderPassCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) {
if (pCreateInfo->pAttachments[0].finalLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR)
((VkAttachmentDescription *)pCreateInfo->pAttachments)[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
return vkCreateRenderPass_org(device, pCreateInfo, pAllocator, pRenderPass);
}
#undef LIBRETRO_VK_WARP_FUNC
#define LIBRETRO_VK_WARP_FUNC(x) \
if (!strcmp(pName, #x)) { \
x##_org = (PFN_##x)fptr; \
return (PFN_vkVoidFunction)x##_libretro; \
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr_libretro(VkInstance instance, const char *pName) {
if (false
#ifdef _WIN32
|| !strcmp(pName, "vkCreateWin32SurfaceKHR")
#endif
#ifdef __ANDROID__
|| !strcmp(pName, "vkCreateAndroidSurfaceKHR")
#endif
#ifdef VK_USE_PLATFORM_METAL_EXT
|| !strcmp(pName, "vkCreateMetalSurfaceEXT")
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
|| !strcmp(pName, "vkCreateXlibSurfaceKHR")
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
|| !strcmp(pName, "vkCreateXcbSurfaceKHR")
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
|| !strcmp(pName, "vkCreateWaylandSurfaceKHR")
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
|| !strcmp(pName, "vkCreateDisplayPlaneSurfaceKHR")
#endif
) {
return (PFN_vkVoidFunction)vkCreateLibretroSurfaceKHR;
}
PFN_vkVoidFunction fptr = vk_init_info.get_instance_proc_addr(instance, pName);
if (!fptr) {
ERROR_LOG(Log::G3D, "Failed to load VK instance function: %s", pName);
return fptr;
}
LIBRETRO_VK_WARP_LIST();
return fptr;
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr_libretro(VkDevice device, const char *pName) {
PFN_vkVoidFunction fptr = vkGetDeviceProcAddr_org(device, pName);
if (!fptr)
return fptr;
LIBRETRO_VK_WARP_LIST();
return fptr;
}
void vk_libretro_init(VkInstance instance, VkPhysicalDevice gpu, VkSurfaceKHR surface, PFN_vkGetInstanceProcAddr get_instance_proc_addr, const char **required_device_extensions, unsigned num_required_device_extensions, const char **required_device_layers, unsigned num_required_device_layers, const VkPhysicalDeviceFeatures *required_features) {
assert(surface);
vk_init_info.instance = instance;
vk_init_info.gpu = gpu;
vk_init_info.surface = surface;
vk_init_info.get_instance_proc_addr = get_instance_proc_addr;
vk_init_info.required_device_extensions = required_device_extensions;
vk_init_info.num_required_device_extensions = num_required_device_extensions;
vk_init_info.required_device_layers = required_device_layers;
vk_init_info.num_required_device_layers = num_required_device_layers;
vk_init_info.required_features = required_features;
vkGetInstanceProcAddr_org = vkGetInstanceProcAddr;
vkGetInstanceProcAddr = vkGetInstanceProcAddr_libretro;
vkGetDeviceProcAddr_org = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(instance, "vkGetDeviceProcAddr");;
vkGetDeviceProcAddr = vkGetDeviceProcAddr_libretro;
vkCreateInstance = vkCreateInstance_libretro;
vkEnumerateInstanceVersion = (PFN_vkEnumerateInstanceVersion)vkGetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion");
vkEnumerateInstanceExtensionProperties = (PFN_vkEnumerateInstanceExtensionProperties)vkGetInstanceProcAddr(NULL, "vkEnumerateInstanceExtensionProperties");
vkEnumerateInstanceLayerProperties = (PFN_vkEnumerateInstanceLayerProperties)vkGetInstanceProcAddr(NULL, "vkEnumerateInstanceLayerProperties");
}
void vk_libretro_set_hwrender_interface(retro_hw_render_interface *hw_render_interface) {
vulkan = (retro_hw_render_interface_vulkan *)hw_render_interface;
}
void vk_libretro_shutdown() {
memset(&vk_init_info, 0, sizeof(vk_init_info));
vulkan = nullptr;
DEDICATED_ALLOCATION = false;
}