-
Notifications
You must be signed in to change notification settings - Fork 6
/
evaluate_mmlu.py
457 lines (384 loc) · 15.3 KB
/
evaluate_mmlu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
from os.path import join
from dataclasses import dataclass, field
import sys
from typing import Optional, Dict
import numpy as np
import logging
import bitsandbytes as bnb
import torch
import transformers
import argparse
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
set_seed,
BitsAndBytesConfig,
LlamaTokenizerFast
)
from peft import (
LoraConfig,
get_peft_model,
PeftModel
)
from peft.tuners.lora import LoraLayer
import pandas as pd
from categories import subcategories, categories
choices = ["A", "B", "C", "D"]
torch.backends.cuda.matmul.allow_tf32 = True
logger = logging.getLogger(__name__)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(
default="EleutherAI/pythia-12b"
)
trust_remote_code: Optional[bool] = field(
default=False,
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={"help": "Enables using Huggingface auth token from Git Credentials."}
)
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=4,
metadata={"help": "How many bits to use."}
)
lora_r: int = field(
default=64,
metadata={"help": "Lora R dimension."}
)
lora_alpha: float = field(
default=16,
metadata={"help": " Lora alpha."}
)
lora_dropout: float = field(
default=0.0,
metadata={"help":"Lora dropout."}
)
ntrain: int = field(default=5)
ngpu: int = field(default=1)
data_dir: str = field(default='mmlu/data')
save_dir: str = field(default='results/')
tau_lambda: float = field(default=0.1)
tau_n: int = field(default=100)
blocksize2: int = field(default=256)
max_memory_MB: int = field(
default=80000,
metadata={"help": "Free memory per gpu."}
)
lora_ckpt_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
def find_all_linear_names(args, model):
cls = bnb.nn.Linear4bit if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def get_accelerate_model(args):
n_gpus = torch.cuda.device_count()
max_memory = f'{args.max_memory_MB}MB'
max_memory = {i: max_memory for i in range(n_gpus)}
print(f'loading base model {args.model_name_or_path}...', flush=True)
compute_dtype = (torch.float16 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
load_in_4bit=args.bits == 4,
load_in_8bit=args.bits == 8,
device_map='auto',
max_memory=max_memory,
quantization_config=BitsAndBytesConfig(
load_in_4bit=args.bits == 4,
load_in_8bit=args.bits == 8,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=args.double_quant,
bnb_4bit_quant_type=args.quant_type # {'fp4', 'nf4'}
),
torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)),
trust_remote_code=args.trust_remote_code,
)
if compute_dtype == torch.float16 and args.bits == 4:
major, minor = torch.cuda.get_device_capability()
if major >= 8:
print('='*80, flush=True)
print('Your GPU supports bfloat16, you can accelerate training with the argument --bf16', flush=True)
print('='*80, flush=True)
setattr(model, 'model_parallel', True)
setattr(model, 'is_parallelizable', True)
modules = find_all_linear_names(args, model)
model.config.torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if args.lora_ckpt_dir is not None:
print("Loading adapters from checkpoint.", flush=True)
print(args.lora_ckpt_dir)
model = PeftModel.from_pretrained(model, join(args.lora_ckpt_dir, 'adapter_model'))
for name, p in model.named_parameters():
if 'lora' in name:
print(name, p.sum(), flush=True)
else:
print(f'adding LoRA modules...', flush=True)
model = get_peft_model(model, config)
# get our irqlora model
from utils import get_my_model
model_fp = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)),
trust_remote_code=args.trust_remote_code
)
model = get_my_model(model, model_fp, args.blocksize2, args.tau_lambda, args.tau_n)
torch.cuda.empty_cache()
print('loading our params...')
checkpoint = torch.load(join(args.lora_ckpt_dir, 'adapter_model/adapter_model.bin'), map_location='cuda:0')
new_checkpoint = {}
for key in checkpoint:
if 'lora' in key and 'scale' in key:
new_key = key
new_checkpoint[new_key] = checkpoint[key]
if 'lora' in key and 'weight' in key:
new_key = '.'.join(key.split('.')[:-1] + ['default'] + key.split('.')[-1:])
new_checkpoint[new_key] = checkpoint[key]
model.load_state_dict(new_checkpoint, strict=False)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
return model
def print_trainable_parameters(args, model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
if args.bits == 4: trainable_params /= 2
print(f"trainable params: {trainable_params} || all params: {all_param} || trainable: {100 * trainable_params / all_param}", flush=True)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def get_model_tokenizer(args):
set_seed(args.seed)
model = get_accelerate_model(args)
model.config.use_cache = False
print_trainable_parameters(args, model)
print('loaded model', flush=True)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
padding_side="right",
use_fast=True,
)
if tokenizer._pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if isinstance(tokenizer, LlamaTokenizerFast):
try:
# LLaMA tokenizer may not have correct special tokens set.
# Check and add them if missing to prevent them from being parsed into different tokens.
# Note that these are present in the vocabulary.
# Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.
if tokenizer.eos_token_id != model.config.eos_token_id or tokenizer.pad_token_id != model.config.pad_token_id or tokenizer.unk_token_id != model.config.unk_token_id:
tokenizer.add_special_tokens(
{
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
"unk_token": tokenizer.convert_ids_to_tokens(model.config.pad_token_id),
}
)
except:
pass
return model, tokenizer
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
prompt = df.iloc[idx, 0]
k = df.shape[1] - 2
for j in range(k):
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
return prompt
def gen_prompt(train_df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject)
)
if k == -1:
k = train_df.shape[0]
for i in range(k):
prompt += format_example(train_df, i)
return prompt
@torch.no_grad()
def eval(args, subject, model, tokenizer, dev_df, test_df):
cors = []
all_probs = []
answers = choices[: test_df.shape[1] - 2]
for i in range(test_df.shape[0]):
# get prompt and make sure it fits
k = args.ntrain
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
while input_ids.shape[-1] > 2048:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(
model.device
)
label = test_df.iloc[i, test_df.shape[1] - 1]
logits = model(input_ids=input_ids).logits[0, -1]
probs = (
torch.nn.functional.softmax(
torch.tensor(
[
logits[tokenizer("A").input_ids[-1]],
logits[tokenizer("B").input_ids[-1]],
logits[tokenizer("C").input_ids[-1]],
logits[tokenizer("D").input_ids[-1]],
]
).float(),
dim=0,
)
.detach()
.cpu()
.numpy()
)
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
cor = pred == label
cors.append(cor)
all_probs.append(probs)
acc = np.mean(cors)
cors = np.array(cors)
all_probs = np.array(all_probs)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
def main(args):
model, tokenizer = get_model_tokenizer(args)
model.eval()
subjects = sorted(
[
f.split("_test.csv")[0]
for f in os.listdir(os.path.join(args.data_dir, "test"))
if "_test.csv" in f
]
)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if not os.path.exists(os.path.join(args.save_dir, "results_{}".format(args.model_name_or_path))):
os.makedirs(os.path.join(args.save_dir, "results_{}".format(args.model_name_or_path)))
all_cors = []
subcat_cors = {
subcat: [] for subcat_lists in subcategories.values() for subcat in subcat_lists
}
cat_cors = {cat: [] for cat in categories}
for subject in subjects:
dev_df = pd.read_csv(
os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
)[: args.ntrain]
test_df = pd.read_csv(
os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
)
cors, acc, probs = eval(args, subject, model, tokenizer, dev_df, test_df)
subcats = subcategories[subject]
for subcat in subcats:
subcat_cors[subcat].append(cors)
for key in categories.keys():
if subcat in categories[key]:
cat_cors[key].append(cors)
all_cors.append(cors)
test_df["{}_correct".format(args.model_name_or_path)] = cors
for j in range(probs.shape[1]):
choice = choices[j]
test_df["{}_choice{}_probs".format(args.model_name_or_path, choice)] = probs[:, j]
test_df.to_csv(
os.path.join(
args.save_dir, "results_{}".format(args.model_name_or_path), "{}.csv".format(subject)
),
index=None,
)
results = {"subcategories": {}, "categories": {}}
for subcat in subcat_cors:
subcat_acc = np.mean(np.concatenate(subcat_cors[subcat]))
results["subcategories"][subcat] = subcat_acc
print("Average accuracy {:.3f} - {}".format(subcat_acc, subcat))
for cat in cat_cors:
cat_acc = np.mean(np.concatenate(cat_cors[cat]))
results["categories"][cat] = cat_acc
print("Average accuracy {:.3f} - {}".format(cat_acc, cat))
weighted_acc = np.mean(np.concatenate(all_cors))
results["weighted_accuracy"] = weighted_acc
print("Average accuracy: {:.3f}".format(weighted_acc))
results_file = os.path.join(
args.save_dir, "accuracies_{}.json".format(args.model_name_or_path.replace("/", "_"))
)
with open(results_file, "w") as f:
json.dump(results, f)
if __name__ == "__main__":
hfparser = transformers.HfArgumentParser((
ModelArguments, TrainingArguments
))
model_args, training_args, extra_args = hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
args = argparse.Namespace(
**vars(model_args), **vars(training_args)
)
training_args.skip_loading_checkpoint_weights=True
print(args, flush=True)
main(args)