forked from grinsted/wavelet-coherence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xwt.m
219 lines (185 loc) · 7.29 KB
/
xwt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
function varargout=xwt(x,y,varargin)
%% Cross wavelet transform
% Creates a figure of cross wavelet power in units of
% normalized variance.
%
% USAGE: [Wxy,period,scale,coi,sig95]=xwt(x,y,[,settings])
%
% x & y: two time series
% Wxy: the cross wavelet transform of x against y
% period: a vector of "Fourier" periods associated with Wxy
% scale: a vector of wavelet scales associated with Wxy
% coi: the cone of influence
%
% Settings: Pad: pad the time series with zeros?
% . Dj: Octaves per scale (default: '1/12')
% . S0: Minimum scale
% . J1: Total number of scales
% . Mother: Mother wavelet (default 'morlet')
% . MaxScale: An easier way of specifying J1
% . MakeFigure: Make a figure or simply return the output.
% . BlackandWhite: Create black and white figures
% . AR1: the ar1 coefficients of the series
% . (default='auto' using a naive ar1 estimator. See ar1nv.m)
% . ArrowDensity (default: [30 30])
% . ArrowSize (default: 1)
% . ArrowHeadSize (default: 1)
%
% Settings can also be specified using abbreviations. e.g. ms=MaxScale.
% For detailed help on some parameters type help wavelet.
%
% Example:
% t=1:200;
% xwt(sin(t),sin(t.*cos(t*.01)),'ms',16)
%
% Phase arrows indicate the relative phase relationship between the series
% (pointing right: in-phase; left: anti-phase; down: series1 leading
% series2 by 90deg)
%
% Please acknowledge the use of this software in any publications:
% "Crosswavelet and wavelet coherence software were provided by
% A. Grinsted."
%
% (C) Aslak Grinsted 2002-2014
%
% http://www.glaciology.net/wavelet-coherence
% -------------------------------------------------------------------------
%The MIT License (MIT)
%
%Copyright (c) 2014 Aslak Grinsted
%
%Permission is hereby granted, free of charge, to any person obtaining a copy
%of this software and associated documentation files (the "Software"), to deal
%in the Software without restriction, including without limitation the rights
%to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
%copies of the Software, and to permit persons to whom the Software is
%furnished to do so, subject to the following conditions:
%
%The above copyright notice and this permission notice shall be included in
%all copies or substantial portions of the Software.
%
%THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
%IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
%FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
%AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
%LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
%OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
%THE SOFTWARE.
%---------------------------------------------------------------------------
% ------validate and reformat timeseries.
[x,dt]=formatts(x);
[y,dty]=formatts(y);
if dt~=dty
error('timestep must be equal between time series')
end
t=(max(x(1,1),y(1,1)):dt:min(x(end,1),y(end,1)))'; %common time period
if length(t)<4
error('The two time series must overlap.')
end
n=length(t);
%----------default arguments for the wavelet transform-----------
Args=struct('Pad',1,... % pad the time series with zeroes (recommended)
'Dj',1/12, ... % this will do 12 sub-octaves per octave
'S0',2*dt,... % this says start at a scale of 2 years
'J1',[],...
'Mother','Morlet', ...
'MaxScale',[],... %a more simple way to specify J1
'MakeFigure',(nargout==0),...
'AR1','auto',...
'ArrowDensity',[30 30],...
'ArrowSize',1,...
'ArrowHeadSize',1);
Args=parseArgs(varargin,Args,{'BlackandWhite'});
if isempty(Args.J1)
if isempty(Args.MaxScale)
Args.MaxScale=(n*.17)*2*dt; %auto maxscale
end
Args.J1=round(log2(Args.MaxScale/Args.S0)/Args.Dj);
end
ad=mean(Args.ArrowDensity);
Args.ArrowSize=Args.ArrowSize*30*.03/ad;
Args.ArrowHeadSize=Args.ArrowHeadSize*Args.ArrowSize*220;
if strcmpi(Args.AR1,'auto')
Args.AR1=[ar1nv(x(:,2)) ar1nv(y(:,2))];
if any(isnan(Args.AR1))
error('Automatic AR1 estimation failed. Specify them manually (use the arcov or arburg estimators).')
end
end
%nx=size(x,1);
sigmax=std(x(:,2));
%ny=size(y,1);
sigmay=std(y(:,2));
%-----------:::::::::::::--------- ANALYZE ----------::::::::::::------------
[X,period,scale,coix] = wavelet(x(:,2),dt,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother);%#ok
[Y,period,scale,coiy] = wavelet(y(:,2),dt,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother);
% truncate X,Y to common time interval (this is first done here so that the coi is minimized)
dte=dt*.01; %to cricumvent round off errors with fractional timesteps
idx=find((x(:,1)>=(t(1)-dte))&(x(:,1)<=(t(end)+dte)));
X=X(:,idx);
coix=coix(idx);
idx=find((y(:,1)>=(t(1)-dte))&(y(:,1)<=(t(end)+dte)));
Y=Y(:,idx);
coiy=coiy(idx);
coi=min(coix,coiy);
% -------- Cross
Wxy=X.*conj(Y);
% sinv=1./(scale');
% sinv=sinv(:,ones(1,size(Wxy,2)));
%
% sWxy=smoothwavelet(sinv.*Wxy,dt,period,dj,scale);
% Rsq=abs(sWxy).^2./(smoothwavelet(sinv.*(abs(wave1).^2),dt,period,dj,scale).*smoothwavelet(sinv.*(abs(wave2).^2),dt,period,dj,scale));
% freq = dt ./ period;
%---- Significance levels
%Pk1=fft_theor(freq,lag1_1);
%Pk2=fft_theor(freq,lag1_2);
Pkx=ar1spectrum(Args.AR1(1),period./dt);
Pky=ar1spectrum(Args.AR1(2),period./dt);
V=2;
Zv=3.9999;
signif=sigmax*sigmay*sqrt(Pkx.*Pky)*Zv/V;
sig95 = (signif')*(ones(1,n)); % expand signif --> (J+1)x(N) array
sig95 = abs(Wxy) ./ sig95;
if ~strcmpi(Args.Mother,'morlet')
sig95(:)=nan;
end
if Args.MakeFigure
Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period))));
H=imagesc(t,log2(period),log2(abs(Wxy/(sigmax*sigmay))));%#ok
%logpow=log2(abs(Wxy/(sigmax*sigmay)));
%[c,H]=contourf(t,log2(period),logpow,[min(logpow(:)):.25:max(logpow(:))]);
%set(H,'linestyle','none')
clim=get(gca,'clim'); %center color limits around log2(1)=0
clim=[-1 1]*max(clim(2),3);
set(gca,'clim',clim)
HCB=colorbar;
set(HCB,'ytick',-7:7);
barylbls=rats(2.^(get(HCB,'ytick')'));
barylbls([1 end],:)=' ';
barylbls(:,all(barylbls==' ',1))=[];
set(HCB,'yticklabel',barylbls);
set(gca,'YLim',log2([min(period),max(period)]), ...
'YDir','reverse', ...
'YTick',log2(Yticks(:)), ...
'YTickLabel',num2str(Yticks'), ...
'layer','top')
%xlabel('Time')
ylabel('Period')
hold on
aWxy=angle(Wxy);
phs_dt=round(length(t)/Args.ArrowDensity(1)); tidx=max(floor(phs_dt/2),1):phs_dt:length(t);
phs_dp=round(length(period)/Args.ArrowDensity(2)); pidx=max(floor(phs_dp/2),1):phs_dp:length(period);
phaseplot(t(tidx),log2(period(pidx)),aWxy(pidx,tidx),Args.ArrowSize,Args.ArrowHeadSize);
if strcmpi(Args.Mother,'morlet')
[c,h] = contour(t,log2(period),sig95,[1 1],'k');%#ok
set(h,'linewidth',2)
else
warning('XWT:sigLevelNotValid','XWT Significance level calculation is only valid for morlet wavelet.')
%TODO: alternatively load from same file as wtc (needs to be coded!)
end
tt=[t([1 1])-dt*.5;t;t([end end])+dt*.5];
hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]),'w');
set(hcoi,'alphadatamapping','direct','facealpha',.5)
hold off
end
varargout={Wxy,period,scale,coi,sig95};
varargout=varargout(1:nargout);