Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError: _hf_hook caused by delattr in hooks.remove_hook_from_module() #3342

Open
2 of 4 tasks
eppaneamd opened this issue Jan 13, 2025 · 4 comments
Open
2 of 4 tasks

Comments

@eppaneamd
Copy link

eppaneamd commented Jan 13, 2025

System Info

- `Accelerate` version: 1.4.0.dev0
- Platform: Linux-6.2.0-39-generic-x86_64-with-glibc2.39
- `accelerate` bash location: /workspaces/.venv_py311/bin/accelerate
- Python version: 3.11.11
- Numpy version: 1.26.3
- PyTorch version (GPU?): 2.5.1+rocm6.2 (True)
- System RAM: 1007.70 GB
- GPU type: AMD Instinct MI250X/MI250
- `Accelerate` default config:
        Not found

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • One of the scripts in the examples/ folder of Accelerate or an officially supported no_trainer script in the examples folder of the transformers repo (such as run_no_trainer_glue.py)
  • My own task or dataset (give details below)

Reproduction

When using the HunyuanVideo model via diffusers framework with the following script:

import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel

MODEL_ID = "hunyuanvideo-community/HunyuanVideo"
PROMPT = "A cat walks on the grass, realistic"

transformer = HunyuanVideoTransformer3DModel.from_pretrained(
    MODEL_ID, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(
    MODEL_ID, transformer=transformer, torch_dtype=torch.float16
)

pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()

pipe.transformer = torch.compile(pipe.transformer, mode="default")

# Warmup
_ = pipe(
    prompt=PROMPT,
    height=320,
    width=512,
    num_frames=61,
    num_inference_steps=1,
    max_sequence_length=256,
    guidance_scale=0.0,
    generator=torch.Generator(device="cuda").manual_seed(42),
)

# Inference
output = pipe(
    prompt=PROMPT,
    height=320,
    width=512,
    num_frames=61,
    num_inference_steps=30,
    max_sequence_length=256,
    guidance_scale=0.0,
    output_type="pil",
    generator=torch.Generator(device="cuda").manual_seed(42),
)

Following error arises:

Traceback (most recent call last):
  File "/workspaces/huvideo_diffusers_repro.py", line 21, in <module>
    _ = pipe(
        ^^^^^
  File "/workspaces/.venv_py311/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspaces/diffusers/src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py", line 689, in __call__
    self.maybe_free_model_hooks()
  File "/workspaces/diffusers/src/diffusers/pipelines/pipeline_utils.py", line 1119, in maybe_free_model_hooks
    self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
  File "/workspaces/diffusers/src/diffusers/pipelines/pipeline_utils.py", line 1050, in enable_model_cpu_offload
    self.remove_all_hooks()
  File "/workspaces/diffusers/src/diffusers/pipelines/pipeline_utils.py", line 1017, in remove_all_hooks
    accelerate.hooks.remove_hook_from_module(model, recurse=True)
  File "/workspaces/accelerate/src/accelerate/hooks.py", line 203, in remove_hook_from_module
    delattr(module, "_hf_hook")
  File "/workspaces/.venv_py311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 2043, in __delattr__
    super().__delattr__(name)
AttributeError: 'OptimizedModule' object has no attribute '_hf_hook'

When wrapping these two lines with try ... except, the run succeeds.

https://github.com/huggingface/accelerate/blob/main/src/accelerate/hooks.py#L203
https://github.com/huggingface/accelerate/blob/main/src/accelerate/hooks.py#L212

If we still log the exceptions, they produce:

Error:  AttributeError – 'OptimizedModule' object has no attribute '_hf_hook'
Error:  AttributeError – 'OptimizedModule' object has no attribute '_old_forward'

This indicates that there seems to be a logical error when using the following coding pattern:

if hasattr(object, attr):
    delattr(object, attr)

Suggesting that even though hasattr returns True, there is no guarantee delattr will work as intended.

Expected behavior

Successful run without errors when using torch.compile and cpu model offloading.

@eppaneamd
Copy link
Author

@muellerzr @a-r-r-o-w

@eppaneamd
Copy link
Author

eppaneamd commented Jan 17, 2025

I apparently had an older version of accelerate. I recloned and reinstalled the repo again from source.

I have updated the issue accordingly. Added also a repro code in plain diffusers for simplicity.

@eppaneamd
Copy link
Author

Another repro with Flux:

import torch
from diffusers import FluxPipeline

MODEL_ID = "black-forest-labs/FLUX.1-dev"
PROMPT = "A small cat"

pipe = FluxPipeline.from_pretrained(pretrained_model_name_or_path=MODEL_ID, torch_dtype=torch.bfloat16)

pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()

pipe.transformer = torch.compile(pipe.transformer, mode="default")

# Warmup
_ = pipe(
    prompt=PROMPT,
    height=1024,
    width=1024,
    num_inference_steps=1,
    max_sequence_length=256,
    guidance_scale=0.0,
    generator=torch.Generator(device="cuda").manual_seed(42),
)

# Inference
output = pipe(
    prompt=PROMPT,
    height=1024,
    width=1024,
    num_inference_steps=25,
    max_sequence_length=256,
    guidance_scale=0.0,
    output_type="pil",
    generator=torch.Generator(device="cuda").manual_seed(42),
)

@SunMarc
Copy link
Member

SunMarc commented Jan 20, 2025

Thanks for the repo ! I'll have a look soon !

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants