-
Notifications
You must be signed in to change notification settings - Fork 56
/
solver.py
398 lines (328 loc) · 17.5 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import time
from datetime import datetime, timedelta
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.utils import save_image
from data_loader import TestSet
from model import Discriminator, DomainClassifier, Generator
from utility import Normalizer, speakers
from preprocess import FRAMES, SAMPLE_RATE, FFTSIZE
import random
from sklearn.preprocessing import LabelBinarizer
from pyworld import decode_spectral_envelope, synthesize
import librosa
import ast
class Solver(object):
"""docstring for Solver."""
def __init__(self, data_loader, config):
self.config = config
self.data_loader = data_loader
# Model configurations.
self.lambda_cycle = config.lambda_cycle
self.lambda_cls = config.lambda_cls
self.lambda_identity = config.lambda_identity
# Training configurations.
self.data_dir = config.data_dir
self.test_dir = config.test_dir
self.batch_size = config.batch_size
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.c_lr = config.c_lr
self.n_critic = config.n_critic
self.beta1 = config.beta1
self.beta2 = config.beta2
self.resume_iters = config.resume_iters
# Test configurations.
self.test_iters = config.test_iters
self.trg_speaker = ast.literal_eval(config.trg_speaker)
self.src_speaker = config.src_speaker
# Miscellaneous.
self.use_tensorboard = config.use_tensorboard
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.spk_enc = LabelBinarizer().fit(speakers)
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
self.result_dir = config.result_dir
# Step size.
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.lr_update_step = config.lr_update_step
# Build the model and tensorboard.
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
def build_model(self):
self.G = Generator()
self.D = Discriminator()
self.C = DomainClassifier()
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
self.c_optimizer = torch.optim.Adam(self.C.parameters(), self.c_lr,[self.beta1, self.beta2])
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
self.print_network(self.C, 'C')
self.G.to(self.device)
self.D.to(self.device)
self.C.to(self.device)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
self.logger = Logger(self.log_dir)
def update_lr(self, g_lr, d_lr, c_lr):
"""Decay learning rates of the generator and discriminator and classifier."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
for param_group in self.c_optimizer.param_groups:
param_group['lr'] = c_lr
def train(self):
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
c_lr = self.c_lr
start_iters = 0
if self.resume_iters:
pass
norm = Normalizer()
data_iter = iter(self.data_loader)
print('Start training......')
start_time = datetime.now()
for i in range(start_iters, self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch real images and labels.
try:
x_real, speaker_idx_org, label_org = next(data_iter)
except:
data_iter = iter(self.data_loader)
x_real, speaker_idx_org, label_org = next(data_iter)
# Generate target domain labels randomly.
rand_idx = torch.randperm(label_org.size(0))
label_trg = label_org[rand_idx]
speaker_idx_trg = speaker_idx_org[rand_idx]
x_real = x_real.to(self.device) # Input images.
label_org = label_org.to(self.device) # Original domain one-hot labels.
label_trg = label_trg.to(self.device) # Target domain one-hot labels.
speaker_idx_org = speaker_idx_org.to(self.device) # Original domain labels
speaker_idx_trg = speaker_idx_trg.to(self.device) #Target domain labels
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real audio frame.
CELoss = nn.CrossEntropyLoss()
cls_real = self.C(x_real)
cls_loss_real = CELoss(input=cls_real, target=speaker_idx_org)
self.reset_grad()
cls_loss_real.backward()
self.c_optimizer.step()
# Logging.
loss = {}
loss['C/C_loss'] = cls_loss_real.item()
out_r = self.D(x_real, label_org)
# Compute loss with fake audio frame.
x_fake = self.G(x_real, label_trg)
out_f = self.D(x_fake.detach(), label_trg)
d_loss_t = F.binary_cross_entropy_with_logits(input=out_f,target=torch.zeros_like(out_f, dtype=torch.float)) + \
F.binary_cross_entropy_with_logits(input=out_r, target=torch.ones_like(out_r, dtype=torch.float))
out_cls = self.C(x_fake)
d_loss_cls = CELoss(input=out_cls, target=speaker_idx_trg)
# Compute loss for gradient penalty.
alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device)
x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True)
out_src = self.D(x_hat, label_trg)
d_loss_gp = self.gradient_penalty(out_src, x_hat)
d_loss = d_loss_t + self.lambda_cls * d_loss_cls + 5*d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# loss['D/d_loss_t'] = d_loss_t.item()
# loss['D/loss_cls'] = d_loss_cls.item()
# loss['D/D_gp'] = d_loss_gp.item()
loss['D/D_loss'] = d_loss.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i+1) % self.n_critic == 0:
# Original-to-target domain.
x_fake = self.G(x_real, label_trg)
g_out_src = self.D(x_fake, label_trg)
g_loss_fake = F.binary_cross_entropy_with_logits(input=g_out_src, target=torch.ones_like(g_out_src, dtype=torch.float))
out_cls = self.C(x_real)
g_loss_cls = CELoss(input=out_cls, target=speaker_idx_org)
# Target-to-original domain.
x_reconst = self.G(x_fake, label_org)
g_loss_rec = F.l1_loss(x_reconst, x_real )
# Original-to-Original domain(identity).
x_fake_iden = self.G(x_real, label_org)
id_loss = F.l1_loss(x_fake_iden, x_real )
# Backward and optimize.
g_loss = g_loss_fake + self.lambda_cycle * g_loss_rec +\
self.lambda_cls * g_loss_cls + self.lambda_identity * id_loss
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_rec'] = g_loss_rec.item()
loss['G/loss_cls'] = g_loss_cls.item()
loss['G/loss_id'] = id_loss.item()
loss['G/g_loss'] = g_loss.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = datetime.now() - start_time
et = str(et)[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, i+1)
# Translate fixed images for debugging.
if (i+1) % self.sample_step == 0:
with torch.no_grad():
d, speaker = TestSet(self.test_dir).test_data()
target = random.choice([x for x in speakers if x != speaker])
label_t = self.spk_enc.transform([target])[0]
label_t = np.asarray([label_t])
for filename, content in d.items():
f0 = content['f0']
ap = content['ap']
sp_norm_pad = self.pad_coded_sp(content['coded_sp_norm'])
convert_result = []
for start_idx in range(0, sp_norm_pad.shape[1] - FRAMES + 1, FRAMES):
one_seg = sp_norm_pad[:, start_idx : start_idx+FRAMES]
one_seg = torch.FloatTensor(one_seg).to(self.device)
one_seg = one_seg.view(1,1,one_seg.size(0), one_seg.size(1))
l = torch.FloatTensor(label_t)
one_seg = one_seg.to(self.device)
l = l.to(self.device)
one_set_return = self.G(one_seg, l).data.cpu().numpy()
one_set_return = np.squeeze(one_set_return)
one_set_return = norm.backward_process(one_set_return, target)
convert_result.append(one_set_return)
convert_con = np.concatenate(convert_result, axis=1)
convert_con = convert_con[:, 0:content['coded_sp_norm'].shape[1]]
contigu = np.ascontiguousarray(convert_con.T, dtype=np.float64)
decoded_sp = decode_spectral_envelope(contigu, SAMPLE_RATE, fft_size=FFTSIZE)
f0_converted = norm.pitch_conversion(f0, speaker, target)
wav = synthesize(f0_converted, decoded_sp, ap, SAMPLE_RATE)
name = f'{speaker}-{target}_iter{i+1}_{filename}'
path = os.path.join(self.sample_dir, name)
print(f'[save]:{path}')
librosa.output.write_wav(path, wav, SAMPLE_RATE)
# Save model checkpoints.
if (i+1) % self.model_save_step == 0:
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
C_path = os.path.join(self.model_save_dir, '{}-C.ckpt'.format(i+1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
torch.save(self.C.state_dict(), C_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
c_lr -= (self.c_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr, c_lr)
print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
self.c_optimizer.zero_grad()
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
C_path = os.path.join(self.model_save_dir, '{}-C.ckpt'.format(resume_iters))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
self.C.load_state_dict(torch.load(C_path, map_location=lambda storage, loc: storage))
@staticmethod
def pad_coded_sp(coded_sp_norm):
f_len = coded_sp_norm.shape[1]
if f_len >= FRAMES:
pad_length = FRAMES-(f_len - (f_len//FRAMES) * FRAMES)
elif f_len < FRAMES:
pad_length = FRAMES - f_len
sp_norm_pad = np.hstack((coded_sp_norm, np.zeros((coded_sp_norm.shape[0], pad_length))))
return sp_norm_pad
def test(self):
"""Translate speech using StarGAN ."""
# Load the trained generator.
self.restore_model(self.test_iters)
norm = Normalizer()
# Set data loader.
d, speaker = TestSet(self.test_dir).test_data(self.src_speaker)
targets = self.trg_speaker
for target in targets:
print(target)
assert target in speakers
label_t = self.spk_enc.transform([target])[0]
label_t = np.asarray([label_t])
with torch.no_grad():
for filename, content in d.items():
f0 = content['f0']
ap = content['ap']
sp_norm_pad = self.pad_coded_sp(content['coded_sp_norm'])
convert_result = []
for start_idx in range(0, sp_norm_pad.shape[1] - FRAMES + 1, FRAMES):
one_seg = sp_norm_pad[:, start_idx : start_idx+FRAMES]
one_seg = torch.FloatTensor(one_seg).to(self.device)
one_seg = one_seg.view(1,1,one_seg.size(0), one_seg.size(1))
l = torch.FloatTensor(label_t)
one_seg = one_seg.to(self.device)
l = l.to(self.device)
one_set_return = self.G(one_seg, l).data.cpu().numpy()
one_set_return = np.squeeze(one_set_return)
one_set_return = norm.backward_process(one_set_return, target)
convert_result.append(one_set_return)
convert_con = np.concatenate(convert_result, axis=1)
convert_con = convert_con[:, 0:content['coded_sp_norm'].shape[1]]
contigu = np.ascontiguousarray(convert_con.T, dtype=np.float64)
decoded_sp = decode_spectral_envelope(contigu, SAMPLE_RATE, fft_size=FFTSIZE)
f0_converted = norm.pitch_conversion(f0, speaker, target)
wav = synthesize(f0_converted, decoded_sp, ap, SAMPLE_RATE)
name = f'{speaker}-{target}_iter{self.test_iters}_{filename}'
path = os.path.join(self.result_dir, name)
print(f'[save]:{path}')
librosa.output.write_wav(path, wav, SAMPLE_RATE)
if __name__ == '__main__':
pass